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ABSTRACT 

 This article proposes a deep learning-assisted nondestructive evaluation (NDE) technique for 

locating and sizing a coating delamination using ultrasonic guided waves. The proposed 

technique consists of sending a propagating guided wave into a coated plate with a transducer 

and measuring the corresponding time-domain signals by receivers at several locations at 

downstream distances from the source transducer. The received time-domain signals are then 

provided to a trained machine-learning (ML) algorithm, which subsequently outputs the location 

and size of any delamination flaws between the transducer and receivers. Numerical simulations 

show that the proposed NDE technique yields accurate results with high throughput, once the 

ML algorithm is well trained. Although training the ML algorithm is time-consuming, this 

training only needs to be done once for a given sample configuration. The results of this article 

demonstrate that the proposed technique has great potential for characterizing delamination flaws 

in practical NDE and structural health monitoring (SHM) applications. 

 

Keywords: Guided wave; delamination; machine learning; deep learning; nondestructive 

evaluation; structural health monitoring 

 

1. INTRODUCTION 

 Thin coatings are commonly used to improve the corrosion, oxidation, heat conduction, and 

wear performances of many mechanical and civil structure components [1, 2]. For example, due 

to their superior high-temperature strength, silicon carbide fiber-reinforced SiC ceramic 
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composites have been reported as a potential cladding material in nuclear power systems [3]. In 

such applications, delamination of the coating layer may occur due to a variety of reasons, 

including poor adherence to the substrate and differential thermal expansion between the coating 

and the substrate [4]. This kind of hidden damage can significantly reduce the benefits of coating 

and endanger the overall structural reliability and durability. Therefore, it is important to develop 

nondestructive techniques to assess coating delamination flaws in safety-critical engineering 

applications. 

 Ultrasonic guided waves are a powerful tool for nondestructive evaluation (NDE) and 

structural health monitoring (SHM) of layered structures because of their ability to propagate 

over long distances [5-8]. Numerous guided-wave-based SHM techniques have been developed 

for delamination inspection in plate-like structures. The most prevalent approach involves Lamb 

waves in a pitch-catch configuration, which often utilizes a transmitter-receiver pair for wave 

generation and reception. When the incident waves interact with a delamination, reflection, mode 

conversion, and transmission can take place at the same time [9]. After passing the delaminated 

region, a considerable amount of energy of the incident waves would be trapped inside the 

delamination area [10]. Consequently, the location of a delamination can be determined by the 

variation in time-of-flight [11], and the delamination size can also be inferred by the wave 

amplitude drop [12-14]. With the advancement of non-contact ultrasonic sensors, the full-

wavefield images acquired by a scanning laser Doppler vibrometer (SLDV) can image the 

delamination profile through the local wavenumber estimation [15]. Although many guided wave 

NDE and SHM techniques have been developed to characterize delamination flaws, the effective 

use of these techniques is highly dependent on the operator’s experience, and deep multi-domain 

knowledge is indispensable to interpreting the guided wave features. To address the challenge of 

operator dependence, automatic delamination detection methods have attracted more attention to 

reduce the reliance on human expertise. 

 Recently, the development of data-driven methods such as machine learning (ML) and deep 

learning (DL) have provided a promising approach to solving the inverse problem. Machine 

learning allows for the effective mapping of input guided-wave features with damage types, 

localization, and severity [16]. For example, Sikdar and Pal used the bag of visual words 

(BOVW) for the classification of the structural healthy and disbond conditions [17]. 

Delamination in composite plates can be accurately localized by applying the support vector 
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machine (SVM) algorithm combined with a sparse sensor array [18]. As a specialized subfield of 

machine learning, deep learning enables learning hierarchical features from raw data based on 

neural networks with multiple layers. One of the significant advantages of deep learning is that 

the interference introduced by manual feature selection can be avoided. In particular, the 

convolutional neural network (CNN) has been used widely and successfully in automatic damage 

identification [19-22]. For example, low-frequency vibration responses were fed into a CNN 

classifier to distinguish the existence of delamination in smart composite laminates [23]. Guided 

wave pulse-echo and pitch-catch active sensing signals were employed to train both 1D and 2D 

CNNs for delamination detection and localization [24]. In addition, a sensor network was further 

designed to facilitate a plurality of wave interrogation paths, serving as the training data for crack 

diagnosis [25]. The guided wave delay-and-sum (DAS) images can also be trained with the 

proposed CNN architecture to predict the flaw locations and sizes [26]. 

 Investigations using ultrasonic guided waves assisted by deep learning algorithms have been 

extensively performed to evaluate structural integrity. However, the training sources are still very 

limited in the open literature, including temporal signals [24, 25, 27], spectral distributions [18, 

28, 29], time-frequency scalegrams [18, 29, 30], frequency-wavenumber information [31], DAS 

images [26], and full wavefield images [32]. 

 This study advances the existing ML/DL methodologies by taking full advantage of time-

space images to localize and size delamination in coated plates. The time-space diagram records 

wave-propagation patterns in a specific direction, endowed with guided wave dispersion 

characteristics [33] and attenuation behavior [34] for the intact case. Many distinctive wave 

damage interaction phenomena, e.g., mode conversion and wave reflection, can also be captured 

by the time-space representation [35]. Therefore, the time-space images contain wave signatures 

in both temporal and spatial domains, possessing tremendous potential for damage detection in 

NDE and SHM applications. This paper further explores its capability to predict the location and 

size of coating delamination with the combination of deep neural networks. This provides a 

feasible approach to solving the inverse problem of damage evaluation. 

 The paper is arranged as follows. Section 2 conducts finite element simulations for the 

forward computation of time-space images, with an emphasis on the advantages of utilizing deep 

neural networks to automatically evaluate delamination. In Section 3, a convolutional neural 

network is proposed, and the prediction results are presented. The out-of-range delamination is 
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further tested to showcase the effective prediction of delamination whose locations are not 

included in the training dataset. Section 4 concludes the paper with a summary and some 

observations. 

 

2. NUMERICAL SIMULATION FOR THE FORWARD PROBLEM 

 In this section, the forward problem of guided wave propagating through a coated plate is 

simulated by carrying out numerical computations using the finite element method. The 

numerical model is constructed to simulate guided wave generation, propagation, interaction 

with a delamination, and reception. Consequently, the time-space image can be obtained for each 

delamination condition. 

2.1 FINITE ELEMENT MODELING 

 We consider a double-layer plate consisting of a zirconium alloy substrate with a chromium 

coating. The corresponding material properties can be found in Table 1. The thickness of the 

substrate is modeled as 1 mm, and the coating thickness is one-fifth of that of the substrate (i.e., 

0.2 mm). To select a guided wave mode for interrogation that is sensitive to delamination, a 

dispersion analysis is initially performed. 

 

Table 1: Material properties for the coated plate [31]. 

Layer Material Young’s modulus (GPa) Poisson’s ratio Density (kg/m3) 

Coating Chromium 279 0.21 7190 

Substrate Zircaloy-4 99.3 0.37 6560 

 

 Dispersion curves and mode shapes can be analytically computed by solving the 

characteristic equation for multi-layered plates [8, 36, 37]. Figure 1 shows the phase velocity 

dispersion curve as well as the displacement mode shapes of the two fundamental wave modes at 

750 kHz. Since these modes are neither purely symmetric nor purely anti-symmetric [37], we 

name them the quasi-fundamental anti-symmetric (qA0) and the quasi-fundamental symmetric 

(qS0) based on their similarities with their counterparts in an isotropic plate. It is obvious that the 

qA0 mode has a comparatively larger out-of-plane displacement at the interface. Thus, it is 

plausible that the qA0 mode is more sensitive to delamination located at the interface. Another 
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benefit of choosing the qA0 mode for delamination inspection is that many receivers such as 

PZT transducers and SLDV are also most sensitive to out-of-plane displacements [38]. 

Therefore, the qA0 wave is selected here as the interrogation mode to interact with damage in the 

following finite element simulations. 

 

 

Figure 1: Guided wave-propagation features in the coated plate: (a) phase velocity dispersion 

curve; (b) displacement mode shape of mode qA0 at 750 kHz; (c) displacement mode shape of 

mode qS0 at 750 kHz. 

 

 The commercial finite element method (FEM) package ANSYS 19.0 was used to simulate 

the guided wave motion in the coated plate. Figure 2 shows the constructed 2D transient dynamic 

numerical model. The length of the coated plate was 410 mm. The excitation signal was a 5-

count Hanning window modulated tone burst waveform centered at 750 kHz, scaled by the in-

plane and out-of-plane displacement profiles of the qA0 mode at the same frequency. Distributed 

forces were simultaneously imposed on the nodes along the left boundary of the plate to generate 

the qA0 mode [39]. In this case, the time step t  was calculated following the guideline [40] 

  
1

20
t

f
 =      (1) 

where f  is the frequency of interest. The quadrilateral element type PLANE182 was used to mesh 

the entire plate. The determination of element size el  also followed the recommendation [40] 
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  min

20
el


=      (2) 

where min  is the wavelength of the qA0 mode at 750 kHz, which can be computed from the 

phase velocity dispersion curve. The corresponding mesh size was 0.1 mm in both in-plane and 

out-of-plane directions to warrant computational accuracy. A total of 1,000 sensing points were 

used on the top surface of the plate to receive the guided wave responses. The first sensing point 

was located at x = 150 mm, and each sensing point was spaced 0.2 mm apart, allowing for 

capturing a 200-mm wavefield propagation distance to create the time-space images. Non-

reflective boundary (NRB) was implemented at the end of the plate [41]. The coverage of NRB 

was more than twice as long as the wavelength of the qA0 mode, which could guarantee the 

effective absorption of boundary reflections. 

 

 

Figure 2: Finite element model for guided wave active sensing. 

 

 The callout in Figure 2 shows the region containing a delamination flaw. The nodes on each 

side of the interfacial flaw were unconnected, simulating the two free surfaces along the 

interface. Such modeling technique can be found in the open literature [24, 42]. 

2.2 ANALYSIS OF SIMULATION RESULTS 

 To illustrate the influence on guided wave features induced by the existence of delamination, 

a pristine model was first simulated with the same actuation and sensing configuration. Figure 3 

shows the temporal signal and time-space representation of the pristine case. The time domain 

signal of the out-of-plane displacement component was recorded at the node located at x = 150 
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mm. Two separate wave packages can be identified. They are the qS0 and qA0 modes, 

respectively. Their propagating trajectories were further captured by the time-space image. The 

reason why a low amplitude qS0 mode was excited is that the mode shape of the qA0 mode with 

the excitation bandwidth varies slightly with the frequency. Thus, the generation of the dominant 

qA0 mode and weak qS0 mode mimics the actual signals observed in practice. In addition, the 

time-space representation nicely depicted the guided wave dispersive characteristic based on the 

wave-package propagating patterns. In this case, it can be seen that the qS0 mode is more 

dispersive than the qA0 mode in terms of both phrase and group velocities. 

 

 

Figure 3:Simulation results of the pristine plate and the plate with a 2-mm long delamination 

located at x = 80 mm: (a) temporal signal of the pristine plate; (b) temporal signal of the 

damaged plate; (c) time-space image of the pristine plate; (d) time-space image of the damaged 

plate. 

 

 When the incident wave interacts with the delamination flaw, the scattered wave field 

becomes more complex. Figure 3 shows the time domain signal and time-space image of the 

coated plate with a 2-mm long delamination located at x = 80 mm (measured from the left tip of 
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the flaw). The amplitude of the main incident wave packages decreased significantly because the 

wave energy was trapped within the delaminated region. In addition, mode conversion also took 

place that generated an additional qA0 mode between the transmitted qS0 and qA0 modes. It 

should be noted that the weaker mode-converted qS0 mode can also be found immediately 

behind the transmitted qS0 mode in the time-space image. Therefore, in this case, the mode 

conversion phenomenon from the qS0 mode to the qA0 mode was more obvious than its 

counterpart. Furthermore, the mode-converted qA0 wave and the reflected qA0 mode from the 

delamination flaw experienced another reflection from the left boundary of the plate, 

respectively. All these wave components are contained in the temporal and spatial 

representations. 

 Before closing this section, it is worth noting the advantages of using guided wave time-

space images assisted by neural networks for solving the inverse problem. The following three 

remarks can be made: 

(1) The guided wave baseline (pristine sample) data are no longer required to determine the 

locations and sizes of any damage. That is to say, the proposed methodology is a 

baseline-free technique that evaluates the structural flaws without referring to the pristine 

condition. 

(2) Many current NDE methods can only achieve quantitative evaluation by associating the 

damage characteristics with a predefined damage index. However, the technique 

proposed here enables direct measurement of precise localization and size of any coating 

delamination flaws. 

(3) Unlike many existing approaches where care must be taken to generate desired wave 

modes to simplify the interpretation of the received signals, the technique proposed here 

utilizes the full wave fields with all existing components (e.g., mode-converted waves, 

reflected waves, and scattered waves). 

 

3. NEURAL NETWORK FOR INVERSE PROBLEM 

 In this section, the inverse problem is solved through a neural network regression algorithm. 

The processing of time-space images obtained from the forward computation is illustrated. Not 

only the in-range dataset but also out-of-range images are tested to evaluate the capability of the 

trained neural network. 
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3.1 DATASET PREPARATION 

 Neural networks are a subfield of machine learning, and they are at the heart of deep learning 

algorithms. Among the different algorithms, the convolutional neural network (CNN) stands out 

because of its extraordinary performance with images [21]. It processes the image by operating 

the convolution of the neighboring pixels. Throughout the layers of the CNN architecture, it can 

gradually recognize greater portions of the image and ultimately identify the intended object. 

 

 

Figure 4: Dataset distribution in terms of delamination starting positions and lengths: (a) 

delamination starting positions; (b) delamination lengths. 

 

 To obtain the time-space images needed for training the CNN, a total of 1,250 FEM 

simulations were conducted with varying delamination sizes and locations, see Figure 4. The 

delamination positions started from 80 mm to 120 mm with an incremental interval of 1 mm. 

The number for each starting position was randomly distributed. The delamination lengths 

spanned from 1 mm to 40 mm with an increment of 1 mm. For each pair of delamination starting 

position and length, we can generate a time-space image. To test the robustness of the model, the 

simulation results of the cases where the delamination was partially underneath the sensing area 

were also included in the total dataset. 
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10 

 

Figure 5: Process of dataset preparation. 

 

 To effectively handle the large amount of data generated by the FEM simulations, several 

data augmentation approaches were used in this study including image flipping, image rotation, 

image shifting, and the addition of Gaussian noise [30]. Specifically, 4-different levels of random 

Gaussian noise were added to the raw signals to account for uncertainty and noise in the 

experimental data, i.e., the signal-to-noise ratio (SNR) equal to 25 dB, 30 dB, 35 dB, and 40 dB. 

Consequently, the total number of datasets became 5,000. Figure 5 shows the 3 steps used to 

process the dataset. Since nothing is recorded by the receiver until the incident wave arrives, the 

corresponding area in the time-space image does not provide useful information for delamination 

identification. Therefore, the second step is to crop this part and retain meaningful guided wave 

patterns. Finally, the 3-channel color image is converted to a single-channel grayscale image. 

One advantage of using the one-channel intensity representation is that the neural network only 

needs to process a smaller amount of data, which can substantially reduce the computational 

time. The resolution of the final time-space image used was 252   252, enabling capturing even 

small changes in the image. 
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3.2 NEURAL NETWORK ARCHITECTURE AND TRAINING DETAILS 

 The CNN architecture utilized in this study is shown in Figure 6. The input to the CNN is the 

1-channel grayscale time-space image with 252   252 pixels. There are 6 convolutional layers in 

the network, all are followed by the ReLu [43] activation function and a batch normalization 

layer [44]. After each convolution layer, a max-pooling layer was added to the network. The 2 by 

2 square kernels were employed to reduce the image pixels in half along both directions. After 6 

rounds of convolution and pooling, the image size was reduced to 4   4, and the number of 

channels increased to 256. Subsequently, the extracted features were flattened and fed to a fully 

connected network with 1,024 neurons in the hidden layer. The regression output is the value of 

the delamination starting position or its length. It means that the location and size of the 

simulated delamination are independently characterized by the neural network. Detailed 

configuration of the proposed CNN architecture is shown in Table 2. 

 

 

Figure 6: The proposed CNN architecture. 

 

Table 2: The proposed neural network configuration. 

Layer name Layer description 

Input 252   252 1-channel time-space image 

Convolution 1, pooling 1 

Convolution filter 3   3, strides 1, padding 3 

Number of filters 8, ReLu, batch normalization 

Max pooling filter 2   2, strides 2 
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Convolution 2, pooling 2 

Convolution filter 3   3, strides 1, padding 1 

Number of filters 16, ReLu, batch normalization 

Max pooling filter 2   2, strides 2 

Convolution 3, pooling 3 

Convolution filter 3   3, strides 1, padding 1 

Number of filters 32, ReLu, batch normalization 

Max pooling filter 2   2, strides 2 

Convolution 4, pooling 4 

Convolution filter 3   3, strides 1, padding 1 

Number of filters 64, ReLu, batch normalization 

Max pooling filter 2   2, strides 2 

Convolution 5, pooling 5 

Convolution filter 3   3, strides 1, padding 1 

Number of filters 128, ReLu, batch normalization 

Max pooling filter 2   2, strides 2 

Convolution 6, pooling 6 

Convolution filter 3   3, strides 1, padding 1 

Number of filters 256, ReLu, batch normalization 

Max pooling filter 2   2, strides 2 

Fully connected 
Input 4096, output 1024 

Input 1024, output 1 

 

 The processed datasets were randomly shuffled and assigned to the training sets and the 

evaluation sets. In this study, 85% of the data were used for training, 10% for validation, and 5% 

for testing. The training was performed in MATLAB with tuned hyperparameters presented in 

Table 3. The Adam optimizer was utilized for fast calculation, and the regression model was 

trained for up to 100 epochs. The initial learning rate was set as 2   10-5, and when it came to the 

50th epoch, the learning rate was multiplied by the drop factor. This type of piecewise learning 

rate schedule can yield a fast convergence in the beginning and ensure a high validation accuracy 

in the final stage [45]. The classic mean squared error (MSE) loss MSEL  was used to quantify the 

difference between the target and predicted output value, which is defined as [30] 

  ( )
2

1

1
ˆ

N

MSE n n

n

L y y
N =

= −    (3) 

where N stands for the batch size; ny  represents the simulated delamination parameter; ˆny  is the 
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predicted value. In this study, the batch size was tuned and eventually determined as 64. 

 

Table 3: Hyperparameters of the training process. 

Hyperparameters Optimizer Epoch 

Initial 

learning 

rate 

Learning 

rate 

schedule 

Learning 

rate drop 

factor 

Learning 

rate drop 

period 

Loss 

function 

Value Adam 100 2   10-5 Piecewise 0.1 50 MSE 

 

 

Figure 7: Training performances: (a) delamination localization; (2) delamination sizing. 

 

 Figure 7 shows the training and validation losses for delamination localization and sizing, 

respectively. The curves for each delamination inspection look quite similar to each other. They 

experienced a rapid decrease within the beginning several epochs, and then slowly declined 

reaching a relatively small value. This demonstrates that no overfitting phenomenon happens in 

each independent training process. 

3.3 DELAMINATION PREDICTION RESULTS 

 To evaluate the prediction accuracy, mean absolute percentage error (MAPE) denoted by 

MAPEL  was used, which takes the form of [24] 

  
1

ˆ1
.

N
n n

MAPE

n n

y y
L

N y=

−
=      (4) 
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It is seen that Eq. (4) calculates the comparative deviation between the simulated and predicted 

damage parameters. Table 4 displays the MAPE of our prediction on the test dataset compared 

with another deep-learning model trained by temporal signals and time-frequency diagrams 

reported in [24]. Our proposed technique rendered much smaller errors for both delamination 

localization and sizing, respectively. This improvement is attributed to the spatial information of 

the wave motion. 

 

Table 4: Comparison of deep learning methods using guided waves for delamination localization 

and sizing. 

MAPE Delamination location Delamination length 

Ours 1.00% 4.24% 

Rautela and Gopalakrishnan [24] 8.50% 11.3% 

 

 

Figure 8: Prediction Results: (a) delamination localization; (b) delamination sizing. 

 

 Some detailed regression results are illustrated in Figure 8. Predicted delamination location 

and lengths are plotted using boxplots. It is seen that almost all the predicted values were on or 

very near the bisector line, with only a very few outliers (denoted by blue circles). These results 

demonstrate that the developed neural network is able to accurately predict the damage location 

and size. 
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3.4 PREDICTION OF AN OUT-OF-RANGE DELAMINATION 

 The CNN algorithm developed above was trained with datasets that contain a range of 

delamination locations and sizes. To test its robustness, consider if the CNN algorithm so trained 

is capable of predicting out-of-range damages (e.g., damage conditions outside of the range of 

the training data). To this end, we extended the existing time-space images by conducting the 

FEM simulations for the damaged model with out-of-range starting locations. For simplicity, we 

maintained the delamination lengths in the range between 1 mm and 40 mm, and the excitation 

and sensing system was also kept the same. Specifically, two sets of starting positions were 

simulated. They range from 75 mm to 79 mm and from 121 mm to 125 mm. The corresponding 

delamination lengths were randomly distributed in the original region. 

 

 

Figure 9: Prediction results of the extended test data: (a) delamination localization with their 

starting positions from 75 mm to 79 mm; (b) delamination localization with their starting 

positions from 121 mm to 125 mm; (c) delamination sizing. 
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 Figure 9 shows the predicted results of the extended test data. Figure 9(a) and (b) show the 

regression for each set of delamination starting positions, respectively. Although most of the 

boxes shifted above or below the bisector line, the actual delamination positions can be 

approximately predicted. This demonstrates that the trained CNN developed here is capable of 

predicting out-of-range delamination locations with reasonable accuracy. We believe that such 

robustness is due to the fact that the time-space image can be reconstructed via sliding along the 

time axis for the cases of out-of-range delamination. Consequently, the trained CNN enables 

providing an effective tool to predict delamination flaws. 

 The predicted delamination lengths are shown in Figure 9(c). It is seen that most of the 

predictions are found across the bisector line, indicating that the size of delamination whose 

positions were outside the training data can be accurately predicted. In other words, the proposed 

method has the capability of predicting out-of-range delaminations. 

 We note that another aspect of the model’s robustness is the ability to predict out-of-range 

delamination size. Unfortunately, the time-space images in this case exhibit quite different pixel 

distributions and the current CNN model is unable to predict the delamination length. 

 

4. SUMMARY AND CONCLUSIONS 

 In this paper, we propose a novel NDE technique assisted by a deep learning algorithm based 

on a CNN architecture for automatic assessment of delamination locations and sizes in a double-

layer plate. A key enabling element of this proposed technique is the development of a trained 

deep-learning CNN algorithm. 

 The development and training of the proposed CNN algorithm consists of several steps. First, 

we conducted numerical calculations using the FEM simulations to solve the forward problem, 

i.e., obtaining the interactions between guided waves and delamination flaws. The complex wave 

field induced by the delamination flaw was recorded by an array of receivers. The recorded 

signals were then processed to yield two-dimensional time-space images. 

 Next, these time-space images for varying delamination conditions were used to train the 

developed CNN. Once trained, the CNN can be used as a tool to predict the delamination 

location and size.  

 Finally, a large number of test datasets were used as input to the train CNN. The predicted 

delamination locations and sizes were then compared with the actual delamination locations and 
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sizes. The results show that our trained CNN achieved much more accurate predictions than 

many existing tools. Such improvement can be attributed to the high fidelity of the time-space 

images used in training and testing the CNN. 

 Further, to test the robustness of the trained CNN algorithm, we extended the test data by 

considering out-of-range delamination. The trained network is still able to precisely predict the 

lengths of delamination whose locations were outside the training dataset, and their locations can 

be approximately determined. These further demonstrated that the proposed technique and the 

trained CNN are robust and can be used to predict out-of-range delamination flaws. 
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