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Abstract

This research applies machine and deep learning to nondestructively characterize the thickness and uniformity of a
coating in a layered system using dispersion curves. A finite element analysis model is first used to computationally model
transient, guided Lamb waves propagating in coated specimens with different coating thicknesses. These time-domain
signals are then processed with a two-dimensional Fourier transform to obtain the corresponding frequency-wavenumber
relation, which are the dispersion maps of the coated specimen. Dispersion maps are characteristic and depend on
both the coating thickness and uniformity, plus its elastic properties (which are taken to be constant). Computationally
simulated dispersion maps for a variety of coating properties are obtained and then further processed to extract a feature
representation for each dispersion curve. Those extracted features are fed into machine learning classifiers which allow a
thickness classification. This machine learning procedure is shown to be effective in classifying the thickness of a uniform
coating. However, if the coating thickness is nonuniform, deep learning, specifically a convolutional neural network
architecture, is used for classification. The network is evaluated and tested, and recommendations on its use are given.
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1. Introduction

Thin coating layers or films on a substrate are often
used to protect the substrate material from corrosion, wear,
oxidation, melting, and thermal cycling. Examples in-
clude the thermal barrier coatings on gas turbine blades [1],5

vacuum-deposited thin films on microelectronic devices [2],
and Chromium-coatings on zirconium alloy in nuclear fuel
claddings [3]. Nondestructive evaluation (NDE) of thick-
ness and mechanical properties of thin coating layers has
been a richly investigated topic using different measure-10

ment techniques that are based on various physical prin-
ciples, including magnetics, eddy current, X-ray photo-
electron spectroscopy, and ultrasound. In many applica-
tions, achieving the coating thickness to be within a de-
sired range is more important than the other properties15

to meet the intended function of the coating layer. Ul-
trasonic techniques have a few advantages among candi-
date NDE methods. For example, [4] employed normal
incident ultrasound in the 10-20 MHz range to determine
the thickness of a thin coating layer on a thick substrate.20

Their examples were for 50−100µm thick epoxy and Plex-
iglas coatings on an aluminum substrate. [5] developed an
acousto-optic technique based on the phase variation of
incident and reflected ultrasound, while [6] analyzed this
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problem to establish the phase dependency on the coat-25

ing parameters. [7] measured the thickness of a very thin
(submicron) fluid lubrication layer between the outer race-
way and ball in a ball bearing using high frequency (50
MHz) ultrasound. Other research used simulated or ex-
perimentally measured data and compared this data to a30

theoretical model [8], or used an inversion scheme based
on the Global Matrix Method, as done by [9, 10]. These
inversion approaches require a thorough understanding of
the underlying wave propagation mechanics, including an
accurate physics-based model.35

In general, determining the thickness of thin coating
layers is a challenging problem where the level of uncer-
tainties about the thickness to be determined can be high.
These uncertainties come from the complex physics of guided
waves – multi modal and dispersive – so a systematic ap-40

proach is needed to statistically describe the unknown coat-
ing thickness. This paper employs a data-driven, machine
learning and deep learning model approach to solve the
problem. The uncertainties are mitigated by determining
and using a feature, the key physical characteristic for the45

thickness determination, which is strategically extracted
from a map of the entire multi modal, dispersive wave
physics of the problem.

By using this machine and deep learning model to de-
termine the coating thickness of a coated specimen, only50

”sufficient” dispersion training data for a varying coating
thickness of a given layered system is required. In this way,
a data-driven, machine and deep learning model are used
as surrogates for the physics-based model.
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The layered system under consideration is a chromium55

coated, zirconium-4 plate. Note that the materials are as-
sumed to be linear elastic with no damping. The training
dispersion relations are computationally produced via fi-
nite element analysis (FEA) – FEA is used to simulate
experimentally measured time-domain signals in physical60

specimens. Thus the forward problem is solved with an
FEA model, specifically Abaqus/Explicit [11]. The effec-
tiveness and validity of FEA for guided wave propaga-
tion is well defined and guidelines for mesh and time step
lengths are considered [12, 13, 14].65

The forward problem provides time-domain values for
particle displacement. Dispersive and multi-modal Lamb
wave signals in a coated plate specimen are complex, so
digital signal processing (DSP) techniques are vital to ex-
tract dispersion information from these time-domain sig-70

nals. Among others, candidate DSP methods include the
Short-time Fourier transform [15], various wavelet trans-
forms like the Gabor wavelet transform [16], and the two-
dimensional Fourier transform (2D-FFT) [17]. This work
relies on the 2D-FFT to calculate dispersion curves from75

these displacement signals which can be compared to ana-
lytically obtained dispersion curves.

A key contribution of this research is that only ”suf-
ficient” training examples from the forward problem are
needed to solve the inverse problem. The idea is that these80

dispersion relations are sensitive to physical variations in
coating thickness of a layered plate system. Depending on
the coating thickness and material properties, either the
coating layer or the base plate has a bigger influence on
the dispersive behavior of the combined, layered system.85

An understanding of a system of a thin coating layer with
similar properties to the base plate is analyzed, and spe-
cific features are manually identified to allow for inversion
on the thin coating layer thickness.

If additional information on coating thickness unifor-90

mity is needed, the proposed machine learning algorithm
approaches its limit. Then, a deep learning method can
be used. Deep learning methods for wave inversion have
been used in geophysics and geoscience, but to the authors’
knowledge, have not yet been applied in a similar context95

to nondestructive evaluation. [18] describes different use
cases for machine learning in seismology, while [19] devel-
oped a deep network consisting of encoder and decoder to
obtain subsurface velocity structures for subsurface char-
acterization in geoscience. Integrating known physical re-100

lationships into the training process has been conducted
by [20, 21].

2. General Approach

This research investigates coating thickness and unifor-
mity with guided Lamb waves. A summary of the solution105

approach to this problem is:

1. use FEA to simulate realistic experimental, time-
domain ultrasonic signals;

2. take these time-domain signals to create dispersion
curves (data) with a 2D-FFT and post-processing110

(clip values between 0 and 0.0001 and remove values
smaller than median);

3. extract features through non-maximum suppression
fit;

4. plug features into machine learning classifiers to train115

and determine coating thickness; and

5. show how uniformity can be classified with a deep
learning network.

Note that inversion of this specific system is difficult to
perform because the coating layer is very thin in compar-120

ison to the base plate thickness (coating thickness on the
order of a hundredth of the plate’s thickness) and that the
elastic material properties of the coating and base plate
components are comparably similar (coating’s and plate’s
Young’s modulus differ by a factor smaller than three). As125

a result, a novel contribution of this study is to show that
data-driven coating thickness inversion is possible with ma-
chine learning combined with FEA simulations.

3. Specimen Description

Consider a model consisting of a zirconium alloy with130

a chromium coating proposed to improve the performance
of accident tolerant fuels [22, 23], specifically a two-layered
bonded system consisting of a 8 cm long and 1 mm thick
zirconium-4 plate with a chromium coating of varying thick-
ness between 10µm and 600µm. The mechanical proper-135

ties of both materials are shown in Table 1. For the FEA
simulation, the excitation source is located at the top left
corner of the coated side of the coating-plate system, just
as it would be for the case of a real ultrasonic measurement.

Table 1: Material properties for coating and plate

Material Young’s Modulus Poisson’s Ratio Density

Zircaloy-4 Ep = 99.3GPa νp = 0.37 ρp = 6.56 g
cm3

Chromium Ec = 279GPa νc = 0.21 ρc = 7.19 g
cm3

140

4. Analysis of Analytically Obtained Dispersion Curves

Dispersion curves are obtained analytically by solving
the characteristic equations for a two-layer plate.[24] Fig-
ure 1 shows the dispersion curves for the coating, the plate,
and the combined system. Since the purpose of this re-145

search is to obtain information about the coating layer,
and not about the underlying zirconium base plate, the
dominant physics of the coating layer needs to be extracted
without the influence of the plate.

The idea is to be able to analyze the lower order modes150

of the coating without (or with little influence of) the
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Figure 1: Analytical dispersion curves for a 200µm coating (red dashed), 1mm plate (green dashed), and the layered combined system (solid
blue).

modes from the base plate. Since the coating thickness is
very small, the idea is to analyze the change in dispersion
curves for high frequencies, f with f ∈ [10, 25] MHz and
wavenumbers within the range of k ∈ [500, 7000] 1m . The155

reason for this is that for these frequencies and wavenum-
bers, the distance between the lower order modes of the
coating (red), i.e. A0,coating and S0,coating, and the lower
order modes of the plate (green), i.e. A0,plate and S0,plate,
is maximized, while keeping the wavenumber and frequency160

reasonably low to meet requirements needed for practical
ultrasonic measurements. Note that S0 and A0 designate,
respectively the lowest symmetric and asymmetric modes
of a specific plate/layer. It can be seen that in the pro-
posed frequency and wavenumber range, the S0,coating and165

A0,coating are present, while only higher order modes of
the plate show up. It should be noted that moving to
higher frequencies and wavenumbers also means approach-
ing the domain where Lamb waves have less influence, and
Rayleigh waves, which concentrate their energy close to the170

boundary/surface, become more dominant.
Simulating the system using FEA is a second modelling

option in addition to analytically solving the characteristic
equations to obtain the dispersion curves of a given system.
The behavior described above is seen in the FEA simulated175

dispersion maps like Fig. 2. Here, high-intensity values
(blue to white) are registered close to the origin, because
the lower order modes of the coating and of the base plate

are close to each other, and because most of the energy is
contained in low frequencies and wavenumbers. It can be180

seen that along the coating’s mode A0,coating the intensity
values are high for higher frequencies and wavenumbers,
and that the modes of the base plate are obvious only
near this area. This means that the location where the
coating’s A0 mode – and also when the higher-order modes185

of the plate show up – is sensitive to the coating thickness.
The area for wavenumbers below k = 2000 1/m is not as
sensitive to the coating’s thickness and therefore, is not
further analyzed in this work, even though it still might
contain useful information.190

5. Forward Problem (Simulation)

A triangular displacement impulse is applied at the up-
per left corner of the coating in the FEA model so that
frequencies up to fmax = 628 MHz are excited which en-
ables a high resolution in the frequency domain as shown195

in Fig. 2. All nodes at the left edge of the system are
constrained in the x1 (in-plane) direction. A sketch of
the FEA used models can be found in Appendix A. Since
the objective of this research is to obtain a dispersion
frequency-wavenumber representation for multiple frequen-200

cies, a wide range of frequencies needs to be excited. This
is done with a triangular pulse, since the Fourier transform
of a triangular pulse is the squared Sinus cardinal (Sinc)
function.
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Figure 2: Analytical dispersion curves and simulated dispersion map
for a coating of 200µm thickness. Blue values indicate a high intensity
while red indicate a low intensity. The yellow line with negative
gradient in the top right corner is connected to reflections and is not
part of this discussion.

Sampling is conducted both in the time and spatial205

domains. The sampled displacement data over time and
space are then transformed into the frequency-wavenumber
domain using the 2D-FFT; the trajectories of high inten-
sity ridges in this map correspond to the dispersion curves
of the Lamb modes in the two layer plate. We call this210

2D-representation a dispersion map.
When comparing the FEA simulated dispersion maps

from different coating thicknesses (and constant base plate
thickness) there are three main entities to look at: the
gradient of the dominant lower order coating modes; the215

convergence/divergence of the lower-order coating modes;
and the appearance of lower- and higher-order modes of
the plate.

Figure 3 shows dispersion maps of three different coat-
ing thicknesses. The gradient of the dominant lower or-220

der coating modes, i.e. S0,coating and A0,coating which are
shown in Fig. 3a, is increasing with thickness, while both
modes converge in Fig. 3b. Additionally, with increasing
thickness of the coating, lower- and higher-order modes of
the plates disappear, such that almost no plate modes can225

be seen in Fig. 3c.

6. Inverse Problem via Machine Learning

Using this specific guided Lamb wave knowledge, the
simulated dispersion curves can now be characterized and
used for a machine learning-based inversion procedure. Here230

dispersion curve features are manually selected, with the
goal of determining if a previously unseen dispersion curve
belongs to a layered system whose coating layer satisfies
the conditions of thick enough or not thick enough.

6.1. Feature Extraction235

The feature extraction consists of two steps: non-max-
imum suppression to extract the coordinates of high-intensity

values around the modes; and fitting a linear function to
these points. The 2D-FFT serves as a two-dimensional
map of intensity values in the frequency-wavenumber do-240

main for a given specimen. The Lamb wave modes are en-
coded in the 2D-FFT spectrum as coherent points of high
intensity. To extract these points, non-maximum suppres-
sion (NMS) is used [25]. NMS is a method from computer
science and computer vision that presents a solution to ex-245

tracting the coordinates of these local intensity maxima.
The extracted maximum intensity values from the dis-

persion curves from the previous section can now be used
as an input to a linear fitting algorithm [26]

f(k) = a k + b, (1)

with the gradient a and the y-intercept b. An example of
a fit is shown in Fig. 4.

This approach works well for the coating thickness range
between 10µm and 600µm, and this approach is not tested250

for thicknesses outside this range. The gradient is espe-
cially sensitive to a change in the coating’s thickness. The
physical explanation for this is:

1. the intensity is higher because the A0,coating mode is
asymmetric, the coating layer is geometrically asym-255

metric, and the excitation is asymmetric;

2. the slope is the parameter directly related to the
A0,coating mode velocity; and

3. for thinner coatings, A0,coating is well isolated in the
dispersion map, and is not contaminated by the other260

modes. For thicker coatings, A0,coating is merges to-
gether with S0,coating.

6.2. Applying Machine Learning Classifiers

A coated specimen is classified as, i.e. the labels are,
thick enough or not thick enough, respectively. Exemplary265

and without loss of generality, a coating thickness of hcoating =
200µm is chosen to be the threshold between thick enough

and not thick enough. The scheme is tested with other
thresholds and works analogously.

The extracted gradient and y-intercept for each disper-270

sion map are now used as features for thickness classifi-
cation. Since only two features are used, a planar visual-
ization of the complete feature space is possible in Fig. 5.
Each data point corresponds to one coated specimen with
respective coating thickness and is color-coded according275

to its ground truth thickness classification.
The first step of applying a machine learning classifier

is to normalize the input data. The feature values are
normalized to the range between zero and one. The data
obtained can now be fed into various classifiers. The clas-280

sifiers used are k-Nearest Neighbor (kNN) [27], single layer
perceptron [28], Support vector machines (SVM) with and
without radial basis function kernel [29, 30], Gaussian pro-
cesses (GP) [31] and feedforward networks (MLP) [32, 33].
The algorithms are then evaluated with k-fold cross-validation285

(CV) for k = 5 [34]. The results after hyperparameter tun-
ing are shown in Table 2.
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Figure 3: FEA simulated dispersion maps for selected thicknesses

Table 2: Comparison of accuracy and standard deviation after 5-fold
cross-validation and hyperparameter tuning.

Classifier Accuracy score σ after CV

1-Nearest Neighbor 0.903 0.123
5-Nearest Neighbor 0.917 0.107

Perceptron 0.94 0.074
Linear Support Vector Machines 0.947 0.066

Radial Basis Function SVM 0.954 0.062
Gaussian Processes 0.903 0.132
Feedforward Network 0.917 0.107

It can be seen that all classifiers perform well given
the dataset of 134 simulated uniformly coated plates, and
achieve high accuracy of over 90%. Support Vector ma-290

chines, especially support vector machines with a radial
basis function kernel (RBFSVM) tend to have the highest
accuracy with the smallest standard deviation after cross-
validation, while one-nearest neighbor (1NN) and Gaus-
sian processes do not perform as well.295

This provides a visualization of two selected classifiers

with the lowest (1NN in Fig. 6) and highest (RBFSVM
in Fig. 7) accuracy, where the red area describes where a
feature combination would be labeled as not thick enough,
and the green area is where a feature combination would300

be classified as thick enough.

7. Inverse Problem via Deep Learning

The machine learning approach for inversion works well
for a uniform thickness, but reaches its limits when a
non-uniformity is incorporated in the coating of a sim-305

ulated specimen. Comparing the dispersion curves of a
non-uniform coating with its uniform counterpart, for an
intended coating thickness of hcoating = 200µm, a depth of
the gap as the non-uniformity of hgap = 100µm (which is
a reduction of the coating thickness by half) over a length310

of lgap = 1.2 cm, While there is a difference in the disper-
sion curves, neither a fitted gradient or y-intercept can be
used to characterize this change. This same trend holds
for other coating thicknesses and gap depths, indicating
that the proposed machine learning-based inversion pro-315

cess is not sensitive to a non-uniformity in the coating.
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Figure 4: Coating thickness of hcoating = 200µm with NMS suppres-
sion and fitted function.

This machine learning approach fails in this application
mainly because any changes in dispersion curves due to
non-uniformity are minor and do not follow a recognizable
pattern. Instead, a convolutional neural network (CNN)320

approach is proposed to learn the non-uniformity features.
Feature classification learning by the CNN alone re-

quires significantly more training data than the simple
machine learning classifiers. To obtain the data for CNN
training, 414 simulations with varying parameters were325

conducted on the Georgia Tech PACE cluster [35]. An
overview of the simulation space can be found in Fig. 8.
Each dot in this figure represents one simulation of a spec-
imen with a given coating thickness hcoating and depth of
the gap hgap as a measure of the extent coating layer non-330

uniformity. The gap length is not shown in the figure and
varies between 14mm and 18mm. Simulations with a non-
uniformity, i.e. a gap depth bigger than zero, are coded
with red circles while uniform simulations are coded with
a green diamond.335

The first step in the development of a neural network
is specifying the shape of the data at the input side. The
dispersion map is first stored in the PNG format. This
is feasible since PNG supports lossless compression [36].
With this procedure, the size of the input data can be340

reduced by a factor of 30. Since PNG files are generally
referred to as images, this work will use the word images to
refer to the dispersion curve inputs to the neural network
too.

The PNG images created are then randomly shuffled345

and assigned to the training and the evaluation sets, such
that 70% of the data is used for training and the remaining
30% are used for testing. Since the amount of data avail-
able, i.e. the number of simulations conducted, is fairly
limited, the evaluation set consists of the test set. As with350

most neural networks, the proposed network in this work
uses batches of input images for training – this study uses
a batch size of 32. The process of loading a random batch
of images, passing them through the network, calculating

the loss of each image, differentiating loss with respect to355

the network weights, and updating them accordingly, is
referred to as one epoch of training.

After conversion to a one-channel image, the image is
resized to a rectangular input of a given resolution. This
research proposes an input resolution of 1024 × 1024 to360

capture even small changes in the image, but smaller in-
put resolutions might be feasible depending on the given
problem. Note that the input resolution is a critical hyper-
parameter of the learning process. Using a resolution that
is too small removes too much high-frequency information365

in the image, while too big a resolution slows down the
learning process.

7.1. SimpleWaveInvNet

SimpleWaveInvNet is a comparable simple network for
thickness inversion developed in this research to capture370

small changes in the input by using the smallest number
of parameters possible [37]. It consists of three layer parts:

• Convolutional layers, consisting of four 2D convolu-
tional layers, 2D max-pooling after the first, third,
and fourth convolutional layer, ReLU1 as activation375

function after each convolutional layer, a dropout
layer in front of the last convolutional layer and a
2D batch norm after the last convolutional layer.

• Average pooling layer which conducts 2D adaptive
average pooling to a 5 × 5 output. This layer al-380

lows for the use of variation in the input size to the
network without the need of restructuring the entire
network architecture.

• Fully connected layers, comprising three fully con-
nected layers with a dropout layer in front of the385

first and second fully connected layer, and a ReLU
layer behind these two layers.

The loss function for the SimpleWaveInvNet is chosen to
be the negative log-likelihood, or NLLLoss [40].

SimpleWaveInvNet is trained over 200 epochs. Fig. 9390

shows the training loss history (a) and training accuracy
history (b) for both the training (blue) and the validation
set (red). It can be seen that the training error for both
the training and validation sets deceases quickly in the
beginning and then decreases more slowly until the end of395

the training process. The shape of the loss curves complies
with the expected learning curves of a neural network.

The accuracy is increasing heavily in the beginning and
then reaches a plateau, for both the training and validation
sets. Again, the overall learning curve complies with the400

expected shape. Note that the validation accuracy varies
more than the accuracy of the training set, which accom-
panies the high noise in the validation loss. A reason for

1ReLU stands for rectified linear unit and is often used as a default
activation function in deep learning [38, 39]. The pointwise non-
linear function f is defined as f(x) = max(0, x).
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Figure 5: Feature plot for dispersion inversion with fitted function of shape f(k) = a k+b and labeling according to threshold hcoating = 200µm.
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Figure 6: kNN classifier with k = 1.

0.0 0.2 0.4 0.6 0.8 1.0

a (gradient of fit)

0.0

0.2

0.4

0.6

0.8

1.0

b
(y
-i
n
te
rc
ep

t
of

fi
t)

Figure 7: SVC classifier with RBF kernel and regularization param-
eter C = 4 and kernel coefficient gamma = 2.

this might be the limited data set size as well as a batch
size chosen to be too small. Some validation batches might405

not be a good representation of the overall dataset.
Figure 10 is a confusion matrix from the evaluation set

for SimpleWaveInvNet. This confusion matrix shows the
ground truth labels on the vertical and the predicted labels
on the horizontal axis. For SimpleWaveInvNet, the ma-410

jority of the non-uniform samples are classified correctly.
Classifying samples with a uniform coating is not as unam-
biguous as for the non-uniform coating, but it still classifies
76% correctly. This demonstrates that SimpleWaveInvNet
is able to provide a uniform/non-uniform thickness classi-415

fication.
Figure 11 is a visualization of how SimpleWaveInvNet

performs on a test set. Most of the data are classified
correctly, while most false positive classifications are above
a thickness of 300µm. This is exactly the third set of420

thicknesses described in Section 5. At this coating layer
thickness, a non-uniformity in the coating has a smaller
impact. It is expected that even with more training data,
the classification of a uniformity is approaching a limit
with the approach given in this research.425

In addition to SimpleWaveInvNet, ResNet18 [41] is also
tested on the same problem, ResNet18 performed poorly
since the number of training data is not sufficient for the
large number of parameters needed for this network.

8. Conclusion430

This research applies machine and deep learning to
nondestructively characterize the thickness and uniformity
of a coating in a layered system using dispersion curves.
FEA is used for the forward problem to computationally
model transient, guided Lamb waves propagating in coated435

specimens with different coating thicknesses. These time-
domain signals are then processed with a 2D-FFT to ob-
tain the corresponding dispersion maps of the coated spec-
imens and then further processed to extract a feature rep-
resentation for each dispersion curve. The inversion pro-440

cedure to determine the coating layer thickness is accom-
plished by feeding these extracted features into machine
learning classifiers. This machine learning procedure is
shown to be effective in classifying the thickness of a uni-
form coating.445

However, if the coating thickness is nonuniform, deep
learning, specifically a CNN network architecture, is used
for classification. This deep learning-based approach demon-
strated that a CNN is capable of learning if a given speci-
men contains a non-uniformity in the coating or not.450

Recommendations for future work include increasing
the training dataset for a better representation to input
into the CNN. Since data besides the A0 and S0 do not
contain physically meaningful information, learning an ad-
ditional neural network as an encoder could decrease the455

input size of the CNN and increase training performance.
Finally, current research is examining experimental ultra-
sonic measurements on a physical layered plate system.
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Figure 11: Classification of SimpleWaveInvNet for test set of 122 simulations with labels provided by network (green diamonds = uniform)
and (red circles = not uniform).
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Appendix A. Finite Element Model

The simulation of the FEAmodel is conducted in Abaqus [11].
The triangular excitation is applied on the top left node
of the system, which reaches its maximum extent after
tmax = 20ns. A sketch of the simulation model with uni-625

form coating is shown in Fig. A.12a, and a sketch of the
model with non-uniform coating in Fig. A.12b.

Sampling in the time and the spatial domains is con-
ducted every ∆T = 20ns and every ∆X = 6µm, respec-
tively. Simulating one of the models on the Georgia Tech630

high-performance cluster PACE [35] takes between 15 and
25 hours depending on the thickness and geometry of the
coating.
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Figure A.12: Sketches of both simulation models. Elements with an x specify parameters which are varied.
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