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SUMMARY

This research focuses on the use of machine and deep learning to non-destructively

characterize the quality of a coating in a layered system in terms of thickness and

uniformness. The coating’s parameters (thickness and uniformness) are evaluated

using dispersion curves.

To obtain these dispersion curves in the first step, this work uses a computational

finite element analysis (FEA) model to obtain dispersion data for coated specimen

with different thicknesses. The simulated FEA data is then processed via a two-

dimensional Fourier transform to obtain a frequency - wave number relation. This

representation is a dispersion curve. Dispersion curves are characteristic and depend

on the coating thickness and uniformness.

Simulated dispersion curves for various coatings are obtained. They are then

further processed and a feature representation for each dispersion curve is extracted.

Those extracted features are then fed into machine learning classifiers which allow a

thickness classification.

The above-described machine learning procedure is limited to classifying the thick-

ness of a uniform coating. To classify if a non-uniformess is present, deep learning

steps in. To obtain information about if a coating is uniform, two convolutional

neural network architectures are used. Both networks are evaluated and tested and

recommendations on their use are given.

xi



CHAPTER 1

INTRODUCTION

Measuring the unknown thickness of a coating of a specimen using ultrasonic waves via

an inversion scheme has been a part of nondestructive evaluation for a long time [1].

Until now, a profound understanding of the underlying physics and a physics-based

model of the underlying problem was necessary for those approaches. Previous re-

search use simulated or experimentally measured data and compare this data to a

theoretical model like [2], or use a scheme based on the Global Matrix Method as

done by [3, 4].

This research proposes an approach to invert to the thickness of a coated specimen

requiring only sufficient training data of a given system. This way, the physics-based

model is surrogated by a data-driven machine learning and deep learning model,

respectively.

Deep learning methods for wave inversion have been around in geophysics and

geoscience, but to the knowledge of the author, have not yet been applied in a similar

context to nondestructive evaluation. [5] describes different use cases for machine

learning in seismology, while [6] developed a deep network consisting of encoder and

decoder to obtain subsurface velocity structures for subsurface characterization in

geoscience. Integrating known physical relationships into the training process has

been conducted by [7, 8].

After this introduction, chapter 2 of this work will be dedicated to understanding

the fundamental concepts of the given forward and inverse problem. This includes

wave propagation in solids, finite element analysis, and signal processing for the

forward problem as well as deep learning for the inverse problem. Chapter 3 then

describes in-depth the setup for the finite element analysis simulations conducted and
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discusses results of the forward problem, such that chapter 4 can build upon that such

that the feature extraction and the machine learning-based thickness inversion can

be described. Chapter 5 describes the uniformness inversion based on deep learning

and chapter 6 concludes this work.
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CHAPTER 2

INTRODUCTION AND THEORETICAL BACKGROUND

In this research, two major problems of material science are discussed: the forward

problem and the inverse problem. While the forward problem assumes that the

material properties like Young’s modulus and density are known such that the state

of the solid, e.g. displacement, stress, strain, can be calculated, the inverse problem

starts the state of the solid and tries to obtain information about the causing material

properties of the material.

The first section of this chapter is devoted to an introduction to wave propagation,

followed by a description of the foundations of finite element analysis in the second

section. The third section gives an intuition about the signal processing used in this

work, i.e. the Fourier transform, and the last section of this chapter explains some

fundamental concepts of deep learning.

2.1 Wave Propagation

This section is intended to provide the reader with a brief introduction to wave

propagation in solid media. It provides a background to understand the topics covered

in this work - but is not intended to give a deep and complete understanding of wave

propagation in general. The reader is encouraged to have a look at [9, 10, 11] for a

more detailed explanation of the subject.

2.1.1 Governing Equations in Linear Elasticity

To derive the one-dimensional scalar wave equation, consider the one-dimensional

wave propagation in an elastic rod with Young’s modulus E, density ρ, cross-section

3



σ(x)

x x+ dx

dx

A

σ(x+ dx)

x1

ux

Figure 2.1: One-dimensional propagation in an elastic rod

A along the rod and the two points x and x + dx along the x1-axis as shown in

Figure 2.1. After inserting the relation for stress σ = F
A
, Newton’s second law provides

∑

Fext = ma⇐⇒ −σ(x, t)A+ σ(x+ dx, t)A = ρdxA
∂2ux
∂t2

(x, t). (2.1)

Expanding Equation 2.1 with the Taylor expansion and reshaping the equation leads

to

∂σ

∂x
(x, t) = ρ

∂2ux
∂t2

(x, t). (2.2)

The media utilized in this work are considered to be continuous, homogeneous,

isotropic, and linear elastic. For an elastic, linear material and small displacements

with the strain ε it holds that

σ(x, t) = Eε(x, t) and ε(x, t) =
∂ux
∂x

(x, t). (2.3)
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From Equation 2.2 and Equation 2.3, the one-dimensional scalar wave equation can

be obtained to

∂2ux
∂x2

(x, t) =
ρ

E

∂2ux
∂t2

(x, t). (2.4)

with a solution given in exponential form

ux(x, t) =
(

Ae(ikx) + Be(−ikx)
)

e(iωt) (2.5)

using the wavelength λ, the wave frequency f , the phase velocity cp, the angular

velocity ω, and the angular wavenumber k. The relationships between those entities

are shown below in Equation 2.6.

λ = cpT cp = fλ ω = 2πf

T =
1

f
k =

2π

λ
=
ω

cp
ω = kcp

(2.6)

The one-dimensional wave equation from Equation 2.4 can be generalized to higher

dimensions. Using the Lamé parameters λ and µ that connect the Young’s modulus

E and the Poisson’s ratio ν according to

λ =
Eν

(1 + ν)(1− 2ν)
, (2.7)

µ =
E

2(1 + ν)
, (2.8)

Hook’s law (constitutive stress-strain relationship) for the stress tensor τi,j is

σij = λεkkδij + 2µǫij (2.9)

5



with the Kronecker delta δi,j and the strain tensor εi,j relating the displacement to

the strain according to

εij =
1

2
(ui,j + uj,i). (2.10)

Neglecting the body forces, the balance of momentum leads to

σij,j = ρüi. (2.11)

Substituting sequentially the strain relation from Equation 2.10 into the constitutive

stress-strain relationship from Equation 2.9 and then into the balance of momen-

tum from Equation 2.11, the three-dimensional displacement equation of motion for

isotropic materials can be obtained to

(λ+ µ)uj,ij + µui,jj = ρüi. (2.12)

This equation can be rewritten into its vector representation

(λ+ µ)∇∇ · u+mu∇2u = ρü. (2.13)

The highly complex nature of the displacement equation of motion in Equa-

tion 2.12 or Equation 2.13, respectively, should be noted. Since it is comparably hard

to solve for the displacement u directly, a simpler set of equations can be obtained

by the introduction of the scalar potential ϕ and the vector potential Ψ. According

to a theorem given by Helmholtz and [12], a vector field can be decomposed into the

gradient of a scalar and the curl of an irrotational vector, i.e.

u = ∇ϕ+∇×Ψ with ∇ ·Ψ = 0. (2.14)

6



The condition ∇ · Ψ = 0 guarantees the uniqueness of the solution for the three

components of u from φ, ψ1, ψ2 and ψ3.

Substituting Equation 2.14 into Equation 2.13 leads to

∇2ϕ =
1

c2L

∂2ϕ

∂t2
and ∇2Ψ =

1

c2S

∂2Ψ

∂t2
(2.15)

with the wave velocities for the longitudinal or P-wave and shear or S-wave cL and

cS, respectively. They are given by

cL =

√

λ+ 2µ

ρ
and cS =

√

µ

ρ
. (2.16)

Each of the two basic types of waves is associated with one of each potential from

Equation 2.14. P- and S-waves s are furthermore referred to as body waves.

2.1.2 Reflection and Transmission of Body Waves

Reflection and transmission are phenomena that occur when waves interact with

boundaries and arise in nearly all applications of ultrasonics. Besides the fundamental

physics around wave reflection and transmission which are described in this section,

these phenomena lead to so-called guided waves which are discussed in the following

section.[13]

For this subsection, consider two half-spaces with different, solid material and

assume the most general case in which either a longitudinal or a shear incident wave

with oblique incidence interacts with the solid-solid interface as shown in Figure 2.2.

Regardless of the type of the wave, the incident wave will be reflected and refracted

into both P- and S-waves1. The effect of a single incidence wave-type producing both

P- and S- waves after reflection and refraction is called mode conversion.

1Exceptions occur for the case of total reflection which is discussed later on.
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θs2

θl2

θl1

θs1

θin
P

P

P

S

S

x1

x3

solid 1

solid 2

(a) P-wave incidence.

θs2

θl2

θl1

θs1θin
P

P

S

S
S

x1

x3

solid 1

solid 2

(b) P-wave incidence.

Figure 2.2: General acoustic bulk wave interaction (incidence, reflection & re-
fraction) at the interface between two solid half-spaces.

With this setup, all field quantities will depend only on x1 and x3. The boundary

conditions at the solid interfaces require continuity at x3 = 0. This continuity means

that normal and shear stresses, as well as normal and horizontal displacements, need

to be equal for both solids at the interface. The boundary conditions can be written

as

vertical displacement:

horizontal displacement:

normal stress:

shear stress:



















u
(2)
1 − u

(1)
1

u
(2)
3 − u

(1)
3

σ
(2)
33 − σ

(1)
33

σ
(2)
13 − σ

(1)
13



















=



















0

0

0

0



















(2.17)

The angles in Figure 2.2 of the incident, reflected, and refracted waves must satisfy

Snell’s law

sin θj
cj

= const for j = in, s1, s2, l1, l2. (2.18)
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For an incident angle above a certain value θcrit which is called critical angle and

which is given by

θcrit = arcsin
cS
cL

(2.19)

the reflected P-wave vanishes and an evanescent surface wave is established. It trav-

els along the x1 axis and decays in x3 direction. Further information about wave

transmission and reflection can be found in [14].

2.1.3 Rayleigh Waves

In elastic media, two and only two types of waves, i.e. P- and S-waves, can be prop-

agated. In the preceding subsection, the interaction of these waves with a boundary

was investigated, and mode conversion was described. Nevertheless, a third type

of wave may exist whose effects are confined close to the surface when there is a

boundary. According to [10], this type of wave was demonstrated theoretically by

the English scientist Lord Rayleigh in 1885, who showed that the amplitude of these

surface waves decays rapidly with depth, i.e. the vibration is limited to a shallow

layer of approx. one wavelength below the surface, and that their velocity of propa-

gation is smaller than that of body waves. This type of wave is called Rayleigh wave.

A schematic sketch of a Rayleigh wave can be found in Figure 2.3 where the gray

ellipses describe the trajectory of the particles in the surface layer.

Recap that the Helmholtz-decomposition and wave equations from Equation 2.14

and Equation 2.15, respectively, hold for a Rayleigh wave as well

u = ∇φ+∇×Ψ with ∇ ·Ψ = 0. (1.14)

9



surface wave

x1

x3

Figure 2.3: Rayleigh surface wave in elastic half-space.

Suppose that the Rayleigh wave propagates in x1 direction, such that u2 = 0, ψ1 =

ψ3 = 0 and ψ2 = ψ, then the simplified wave equation transfers to

∂2ϕ

∂x21
+
∂2ϕ

∂x23
+ k2Lϕ = 0 with kL =

ω

cL
(2.20)

∂2ψ

∂x21
+
∂2ψ

∂x23
+ k2Sψ = 0 with kS =

ω

cS
. (2.21)

The solutions to the second-order Equation 2.20 and Equation 2.21 allow the potential

functions to be rewritten as

ϕ = Ae−κLx3ei(kRx1−ωt) with κL =
√

k2R − k2L, (2.22)

ψ = Be−κSx3ei(kRx1−ωt) with κS =
√

k2R − k2S, (2.23)

10



with the Rayleigh wavenumber kR = ω
cR
. It can be seen that the surface wave solution

is a combination of coupled longitudinal and shear waves and that both partial waves

are evanescent (kR > kS > kL).

The normal stress parallel to the surface and the shear stress is

σ33 = λ

(

∂2ϕ

∂x21
+
∂2ϕ

∂x23

)

+ 2µ

(

∂2ϕ

∂x21
+

∂2ψ

∂x1∂x3

)

, (2.24)

σ31 = µ

(

2
∂2ϕ

∂x1∂x3
+
∂2ψ

∂x21
− ∂2ψ

∂x23

)

. (2.25)

which are required to be zero at the surface at x3 = 0. Writing this in matrix form

and substituting ϕ and ψ leads to the resulting characteristic equation

(

κ2S + k2R
)2 − 4κSκLk

2
R = 0. (2.26)

Resubstituting the expressions from above into Equation 2.26 gives the exact Rayleigh

equation

η6 − 8η4 + 8(3− 2ξ2)η2 − 16(1− ξ2) = 0 with ξ =
cS
cL
, η =

cR
cS

(2.27)

which can be approximately solved to

η ≈ 0.87 + 1.12ν

1 + ν
. (2.28)

For most cases, it can be assumed that η ≈ 0.9 holds.

Using these findings allows substituting the Rayleigh wavenumber kR = ω
cR

into

Equation 2.22 and Equation 2.23 which can be substituted into Equation 2.14 then.

This is omitted in this work. Doing this shows that there is a 90° phase difference

between the normal and tangential displacements which indicate that the particle

motion is elliptical in nature and retrogrades with respect to the direction of propa-
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x1

x3

P-wave S-wave

Excitation

Figure 2.4: Reflection of partial waves in a wave guide.

gation (this means the motion is counter-clockwise for a wave travelling to the right).

At the surface, the vertical component of displacement is larger than the horizontal

component. The particle motion trajectories are shown as grey ellipses in Figure 2.3.

2.1.4 Wave Guides

In section subsection 2.1.2, reflection phenomena in half-spaces were discussed, where

an interface or bounding between two different solids introduced a coupling between

P-waves and S-waves, which both can be generated from the other wave type after

reflection and refraction. When there is an infinite body with finite dimensions in

one direction, like an infinitely long plate, P- and S-waves will be reflected back and

forth between the two boundaries. This is shown in Figure 2.4 and causes a pattern

of constructive and destructive interference within the body. The interference of

the partial waves generate a new kind of wave propagating in the direction of the

boundaries. This pattern can be interpreted as a standing wave in x3 direction while

the wave is traveling in x1 direction. Since these waves are guided by the boundaries,

they are called guided waves and the body in which this phenomenon happens is

called waveguide.[15]
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To analyze the motion in the elastic layer, consider a solution for the wave equa-

tions Equation 2.14 which are two-dimensional for plain strain. For investigation of

the wave motion in the elastic layer, consider a solution of the form

ϕ = Φ(x3) exp[i(kx1 − ωt)], (2.29)

ψ = Ψ(x3) exp[i(kx1 − ωt)]. (2.30)

Substitution of Equation 2.29 and Equation 2.30 into Equation 2.14 leads to a solution

of the resulting equation as

Φ(x3) = A1 sin(px3) + A2 cos(px3) (2.31)

Ψ(x3) = B1 sin(px3) + B2 cos(px3) (2.32)

with

p2 =
ω2

c2L
− k2, q2 =

ω2

c2S
− k2. (2.33)

Substituting these solutions into the displacement equations shows that the modes of

a wave propagating in the elastic layer can be split up into two systems of symmetric

and anti-symmetric modes. Symmetric modes contain mostly longitudinal motion,

while anti-symmetric modes contain mostly vertical motion. The expression relating

ω tp the wavenumber k can now be obtained from the boundary conditions. Assuming

a plate with stress-free boundaries at x3 = ±h with plain strain, the Rayleigh-Lamb

frequency equations are given by [11] as

symmetric modes:
tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2 , (2.34)

asymmetric modes:
tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
. (2.35)
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Likewise, the guided waves are referred to as Lamb waves and are determined by their

wavenumber k and their frequency f . At a given frequency, more than one wave with

the corresponding wavenumber can exist in the waveguide. The possible combinations

of the frequency with their corresponding wavenumber form modes, which differ for

different geometries and materials. These branches can be visualized in a frequency-

wavenumber diagram like Figure 2.5 for a 1mm thick plate of Zirconium-4, where

each of the branches describes one propagating mode. It should be noted that the

solution of all modes should be continuous for all wavenumbers starting at zero. Even

though the equations look rather simple, solving them is comparably hard. The modes

should be continuous and start at k = 0 1
m
. The reason why this is not the case in

Figure 2.5 is purely computationally induced. Solving for the modes was first done by

[16], and is additionally described by [17]. Today, both free and commercial software

for finding the roots of Equation 2.34 and Equation 2.35 is available. For this work,

[18] was used. Note that Lamb modes are dispersive, hence the propagation velocity

depends on its frequency. A different visualization of this can be found in Figure 2.6

which contains the same underlying data from a 1mm thick Zirconium-4 plate as in

Figure 2.5 and only uses a different representation to demonstrate the different mode

speeds at different frequencies.

Symmetric and asymmetric modes are not only appearing in single material sys-

tems, but exist in layered media too, even though there they cannot be clearly distin-

guished as symmetric and asymmetric anymore. [19] gives an introduction to Lamb

wave propagation in layered media.
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Figure 2.5: Analytically obtained dispersion relation for a 1mm thick Zirconium
plate in the frequency-wavenumber representation.
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2.2 Finite Element Analysis Foundations

In finite element analysis (FEA), a body is approximated with discrete finite elements

which are connected at N finite element nodal points on the element boundaries.

Therefore, the displacement at element m can be written as

u(m)(x1, x2, x3) = H(m)(x1, x2, x3)Û (2.36)

with the displacement interpolation matrix H(m) and Û as a vector of the three global

displacement components X1, X2, X3 at all nodal point, such that

Û = [X1,1, X2,1, X3,1, ..., XN,3, XN,3, XN,3] (2.37)

The choice of H(m) is one of the basic steps of a finite element solution.

The corresponding strain elements are given by

ε
(m)(x1, x2, x3) = B(m)(x1, x2, x3)Û (2.38)

with the strain-displacement matrix B whose rows are obtained by combining and

appropriately differentiating rows of H(m).

The stresses are related to the strains and initial stresses σi according to

σm = Cm
ε
(m) + σi(m) (2.39)

with the elasticity matrix C(m) of element m. C(m) is specified by the material law

and can differ from element to element.

With this, the general equation of motion can be derived. This research assumes

linear elasticity. The general equation of motion and can be stated in matrix form in
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terms of the nodal displacements u and their derivative for the equilibrium are given

as

Mü+Cu̇+Ku = R (2.40)

with the load vector R, and where M is the mass matrix given by

M =
∑

m

∫

V m

ρ(m)H(m)TH(m)dV (m),, (2.41)

with the mass density of element m which is ρ(m). C is the damping matrix of the

formally structure

C =
∑

m

∫

V m

κ(m)H(m)TH(m)dV (m), (2.42)

with κ(m) as the damping property parameter of element m, and K is the stiffness

matrix described by

K =
∑

m

∫

V m

B(m)TC(m)B(m)dV (m). (2.43)

For further reading the author recommends [20], [21], and [22].

2.3 Signal Processing and the Fourier Transform

This section presents the fundamental signal processing methods used in this work. As

described earlier, a wave propagating in solids usually consists of several frequencies.

Hence, a physical process like wave propagation can be described in the time domain,

where some physical quantity depends on the time, e.g. s(t), or in the frequency

domain where the process is defined by its amplitude S and as a function of frequency,

i.e. S(f). It is useful to think of both s(t) and S(f) as different representations of
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the same function. Since an analysis in the time domain makes solving the problems

in wave propagation harder, the analysis in this work takes place primarily in the

frequency domain. The transformation from the time to the frequency domain is

conducted by the Fourier transformation.

In the following, first the Fourier transformation for continuous signals and sec-

ondly for discretely sampled data is described. In the last step the Fourier transfor-

mation for real data in two dimensions is discussed as this work heavily relies on this

method. Other methods like the short-time Fourier transform or the Wavelet trans-

form, as described in [23], are not further investigated. For a deeper understanding

of the Fourier transform, the author recommends [24], [25], and [26].

2.3.1 Fourier Transform for Continuous Signals

Classically, the Fourier transformation was developed for continuous functions. For

a function s(t) which is absolutely integrable, i.e. ||s(t)||1 =
∫

∞

−∞
|s(t)|dx < ∞, the

continuous Fourier transformation F and its inverse F−1 are defined as

F{s(t)} = S(f) =

∫

∞

−∞

s(t)ei2πftdt,

F−1{S(f)} = s(t) =

∫

∞

−∞

S(f)e−i2πftdf .

(2.44)

If s(t) is measured in seconds, then S(f) from Equation 2.44 has the unit cycles per

second or Hertz
(

1
s

)

. If s(t) is measured in meters, then S(f) is a function of the

inverse wavelength
(

1
m

)

.

The same Fourier transformation can be written with the use of the angular fre-

quency ω = 2πf as

F{s(t)} = S(ω) =

∫

∞

−∞

s(t)eiωtdt,

F−1{S(ω)} = s(t) =
1

2π

∫

∞

−∞

S(ω)e−iωtdω.

(2.45)
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For further information consulting signal processing literature like [25] and [27] is

recommended.

2.3.2 Fourier Transform of Discretely Sampled Data

Practically, most signals are captured digitally in a discrete way. For the discrete

Fourier transformation a function is estimated from a finite number of sampled points.

Assume that there are N successive sampled points with the sampling interval ∆

sk ≡ s(tk), tk ≡ k∆, k = 0, 1, 2, ..., N − 1 (2.46)

and that the sampled points are at least typical of how s(t) looks like if the analyzed

time interval does not lay completely within the sampled points. Since not more than

N independent numbers of output can be produced from the N sample points, the

Fourier transform S(f) cannot be estimated at all values of f ∈ [−fc, fc], where fc is

the Nyquist critical frequency given by

fc ≡
1

2∆
. (2.47)

Hence, instead of computing the values for all frequencies f , only the values at discrete

frequencies are estimated at

fn ≡
n

N∆
for n = −N

2
, ...,

N

2
. (2.48)

Note that the extreme values for fn correspond to the lower and upper limits of the

Nyquist critical frequency range.
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To calculate the amplitude values at the above mentioned discrete frequencies,

the final step is to approximate the integral from Equation 2.44 by a discrete sum to

S(fn) =

∫

∞

−∞

s(t)e−i2πft ≈
N−1
∑

k=0

se2πifntk∆ = ∆
N−1
∑

k=0

ske
2πikn/N (2.49)

where Equation 2.46 and Equation 2.48 have been used for the final transformation.

The discrete Fourier transform of N points is therefore defined by

SN ≡
N−1
∑

k=0

ske
2πikn/N . (2.50)

2.3.3 Fourier Transforms of Real Data in Two Dimensions

The two-dimensional Fourier transform was originally developed for analyzing exper-

imental results in the form of multimode time signals as described by [28]. Since it

allows obtaining a frequency-wavenumber representation from discrete measurements

from various sources, the 2D-Fourier transformation is used heavily in this research.

Assume a complex function s(k1, k2) is given over the two-dimensional grid 0 ≤

k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1. Then, its two-dimensional discrete Fourier transform

S(n1, n2) can be defined by

S(n1, n2) =

N2−1
∑

k2=0

N1−1
∑

k1=0

s(k1, k2)e
2πik2n2/N2e2πik1n1/N1 . (2.51)

Usually, n1 and n2 will correspond to one spatial direction and time or to two spatial

directions. In this work, the data is sampled spatially and temporally. The advantage

of this method is that different modes can be easily distinguished because of each

mode’s distinct frequency-wavenumber relation as described in subsection 2.1.4. In

the following, the two-dimensional Fast-Fourier transform (2D-FFT) will be used
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instead of the standard 2D-Fourier transform since it is computationally optimized

but offers the same results.

2.4 Deep Learning

In the inversion part of this work, a deep convolutional neural network (CNN) is

used. Hence, this section discusses the theoretical basics of deep neural networks.

Even though deep learning is traditionally a part of machine learning, its complexity

goes way beyond simple supervised machine learning classifiers. Because of this, the

entire following section is devoted to deep learning.

First, an introduction into the simplest network structure, so-called feedforward

networks or multilayer perceptrons is given. It is discussed how data is passed through

a network and how deep networks learn. Lastly, convolutional neural networks as a

special kind of feedforward networks are described.

2.4.1 Deep Feedforward Networks

The fundamental idea of a deep feedforward network is to approximate a function f ∗.

In the given case of classification, this can be y = f ∗(x) mapping an input x to a

category y. To be precise, the network defines the mapping y = f(x,W) and learns

the parameters W that result in the best function approximation. Information only

flows from the input x through the intermediate computations used to define f to

the output with no feedback connections. Feedforward networks typically compose

together many different functions. Assume there are the three functions f (1), f (2), and

f (3) connected in chain, i.e. f(x) = f (3)(f (2)(f (1)(x))). This structure is used often

in neural networks, where f (1) is called the first layer, f (2) is called the second layer,

and f (3) is called the third layer. The first layer of a network is called input layer

and the final layer is called the output layer, while the layers in between are referred

to as hidden layers. The number of layers defines the depth of the network. During
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training, the network tries to match the learned function f(x) as close as possible to

the ground truth function f ∗(x). The training data consists of noisy samples from

f ∗(x) and is accompanied by a label y ≈ f ∗(x). Since the training data is labeled,

each training data sample specifies exactly what the desired output if the output

layer should be, i.e. a value that is sufficiently close to the ground truth label y.

All other layers are not specified directly by the training samples and the learning

algorithm must decide by itself how to use the input and hidden layers to obtain the

best approximation of f ∗.

In general, each layer in a linear feedforward neural network represents a simple

matrix operation in layer i as

h(j) = W(i)h(i) + b(i) with j = i+ 1, (2.52)

with the layer output h(j) ∈ R
Nj (, input layer of the next jth layer), the weights or

parameters W(i) ∈ R
Nj×Ni , layer input h(i) ∈ R

Ni and bias vector b(i)∈R
Nj
.

Since a linear mapping as in Equation 2.52 does not allow to learn nonlinear rela-

tionships, so-called activation functions or non-linearities are used. A non-linearity

is a nonlinear function applied to the output of the linear matrix operation, such that

in practice usually

h(j) = g(i)
(

W(i)h(i) + b(i)
)

with j = i+ 1, (2.53)

holds with the activation function g(i). In machine learning practice, most networks

use the Rectified Linear Unit (ReLU).

Forward Pass

In Figure 2.7 a schematic visualization of a neural network with three layers during

the forward pass is shown. The input to the network is x ∈ R
D and the output is
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Figure 2.7: Schematic forward propagation through three layered feedforward
neural network.

o ∈ R
N3 . The input of the network is fed into the first layer where it is multiplied

with the weights of the neurons of the first layer W (1) ∈ R
N1×D and added to the

biases of the first layer b(1) ∈ R
N1 . To make the network suitable to learn non-linear

functions, this sum is then fed into a non-linear activation function of layer one, i.e.

g(1). In this example, each unit takes as input all the units from the previous layer

which is called fully connected. The output of layer one is analogously fed into layer

two, such that h(1) ∈ R
N1 , W (2) ∈ R

N2×N1 , b(2) ∈ R
N2 , and h(2) ∈ R

N2 .

Optimization for Deep Models

To optimize a network, a measure that quantifies how good the network is, is vital.

In most machine learning scenarios, P is chosen to be the real performance measure.

P is then d defined with respect to the test set but may be indissoluble in most

cases. Since P cannot be optimized directly generally, a different loss or cost function

J(W) which can be optimized, is optimized with the hope that optimizing J(W) also

improves P . Therefore, learning in a neural network consists of minimizing a cost

function J(W) with respect to the parameters W over the training set. The cost

function can be usually written as an average over the training set like

J(W) = E(x,y)∼p̂dataL (f(x,W), y) , (2.54)

with the loss function L, the predicted output f(x,W), the ground truth target y,

and the empirical data distribution p̂data. In general, it would be optimal to minimize
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the cost function across the unknown data-generating distribution pdata rather than

just over the known finite training set.

The optimal parameter set W∗ can be obtained by solving the minimization prob-

lem

W∗ = argmin
W

N
∑

i=1

L
(

f(x(i),W), y(i)
)

. (2.55)

with the n-th input x(n) within N data points.

Stochastic Gradient Descent

After discussing suitable performance measures for a neural network, the question

arises on how to minimize a complicated function of parameters. The answer to this

is backpropagation, which is technically repeated application of the chain rule [29].

The gradient of the loss is given by

∇WL(W) =
N
∑

i=1

∇WLi(xi, yi,W). (2.56)

and is pointing in the direction where the loss increases the most. This gradient is

then used to update the network parameters according to

W←W − ǫ∇WL(W), (2.57)

with the learning rate ǫ ∈ [0, 1] as a hyperparameter. Since a full summation over the

entire dataset in Equation 2.56 is expensive for large N , it is common practice to use a

minibatch of examples instead of the whole summation over the entire data set. When

the examples are shuffled and randomly selected, the gradient descent algorithm gets

stochastic. This gives the algorithm its name: Stochastic Gradient Descent (SGD).
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In practice, mostly computationally optimized enhancements of SGD like Adam [30]

are used.

2.4.2 Convolutional Neural Networks

One major drawback of fully connected networks is that their number of parameters

rises quickly fast. A huge number of parameters, in turn, requires more training

samples that might not be accessible, as well as more computational resources like

storage and memory, are need. Additionally, for a lot of computer vision problems, a

spatial correlation is mostly local anyway.

At this point, convolutional neural networks (CNNs) [31, 32] step in. CNNs can

be used to process data with a known grid-like topology. They are simply neural

networks that use the convolution operator instead of general matrix multiplication

in at least one of their layers.[33]

In engineering and science, convolution is usually defined as

s(t) = (x ∗ w) (t) =
∫

x(a)w(t− a)da, (2.58)

with the input x, the kernel w, and the output s(t) which is sometimes called feature

map.

In machine learning, the data to use is usually in a form of a multidimensional

array and the kernel is a multidimensional finite array of parameters adapted by the

learning algorithm. This allows to discretizing Equation 2.58. For a two-dimensional

image I as an input with the two-dimensional kernel k the convolution operation for

the (i, j) element is

S(i, j) = (I ∗ k)(i, j) =
∑

m

∑

n

I(m,n)k(i−m, j − n). (2.59)
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At this point, it should be noted that most modern machine learning frameworks do

not implement the convolution from Equation 2.59 and instead use a related function

called cross-correlation which is given by

S(i, j) = (I ∗ k)(i, j) =
∑

m

∑

n

I(i+m, j + n)k(m,n), (2.60)

but call it convolution still. An example of 2D-convolution can be found in Figure 2.8.

It can be seen that the same parameters α, β, γ, and δ are used for all convolution

operations. This is called parameter sharing and reduces the number of learned

parameters at large.

A typical convolutional layer in a CNN includes three steps. In the first step,

the convolution is performed. In the second step, the output feature map is run

through a non-linearity, e.g. ReLU. In the third and last step, a pooling function

is applied to modify the layer further. A pooling function uses the nearby outputs

of a certain location and replaces the output with a summary statistic of those. For

further readings about convolutional neural networks, [33] and [34] are recommended.
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Figure 2.8: Example of a two-dimensional convolution with a 2× 2 kernel and
restriction to output values where the kernel lays completely in the
input tensor (no padding needed in this case).
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CHAPTER 3

FORWARD PROBLEM

In this chapter, the forward problem is discussed. During the forward problem, the

material properties are known and the state, i.e. displacements, of the analyzed

solid are calculated. For the forward problem the finite element analysis software

Abaqus CAE is used. All postprocessing is conducted in Python 3. Abaqus itself was

automated with Python 2 to upscale and parallelize simulations.

In the following, the used materials are described first. Then, an in-depth ex-

planation into the FEA model is given. Then, the 2D-FFT postprocessing which

creates dispersion plots from the simulated data is described. An introduction into

max-pooling and function fitting is given which is used to extract features for the

standard machine learning inversion part.

3.1 Material Description

To increase the performance of accident tolerant fuels, coated zirconium alloys are

a promising solution [35]. Especially, a combination of a zirconium alloy with a

chromium coating is auspicious [36, 37]. Therefore, in this research, the two-layer

bonded system uses a 1mm thick Zirconium-4 plate with a Chromium coating of

varying thickness. The material properties of both materials can be found in Table 3.1.

Material Young’s Modulus Poisson’s Ratio Density

Zircaloy-4 Ep = 99.3GPa νp = 0.37 ρp = 6.56 g
cm3

Chromium Ec = 279GPa νc = 0.21 ρc = 7.19 g
cm3

Table 3.1: Material properties for coating and plate
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3.2 FEA Basics in Abaqus

Abaqus is a software suite that offers five software products for FEA:

• Abaqus/CAE,

• Abaqus/Standard,

• Abaqus/Explicit,

• Abaqus Multiphysics,

• Add-on Tools.

For this research, primarily Abaqus/Standard and Abaqus/Explicit are of interest,

since those two packages can be used to solve dynamic problems like Equation 2.40.

For Abaqus/Standard, an unconditionally stable implicit algorithm is used. The im-

plicit algorithm takes more time to compute and needs significantly more computa-

tional ressources than Abaqus/Explicit. Abaqus/Explicit uses an explicit solver which

makes it computationally efficient for the analysis of large models with relatively short

dynamic response times. This makes it optimal for high-frequency simulations. In the

following, the fundamental properties for an FEA analysis are described since a smart

parameter selection has a huge influence on the computation’s cost and accuracy.

3.2.1 Integration Step Time

Abaqus/Explicit integrates the state of the model using many small time increments

∆t based on the state of the model and the start of the increment at time t. The

central difference operator is only conditionally stable with the stability limit being

approximately equal to the time for an elastic wave to cross the smallest element
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dimension in the model. Per default, Abaqus/Explicit approximates this stability

limit across any of the elements in the mesh via

∆t ≈ le,min

cL
(3.1)

where le,min is the smallest element length in the mesh and cL is the wave speed of

a longitudinal wave. Since equation Equation 3.1 provides the approximate stability

limit, practically, Abaqus/Explicit uses a more conservative and safe estimate for the

maximum integration step size which is given by

∆t ≈ le,min√
2cL

. (3.2)

Additionally, Abaqus uses a variable step size to speed up the simulations per default.

The automatically calculated step size for Abaqus/Explicit seems to produce good

results. However, the software allows the user to manually specify the time step too.

When manually choosing a step size, two cases need to be taken into consideration:

if the time step is too short, a lot of calculation time and resources are wasted, but if

the time step is too long, high-frequency vibrations are not resolved accurately and

the solution process might become numerically unstable. A rule of thumb for the

integration step time is given by [38] as

∆t =
1

20fmax

. (3.3)

3.2.2 Meshing

Meshing a model is a fundamental step in FEA. After meshing, a discretized repre-

sentation of the model is obtained. Typically, the smaller the mesh size, the more

accurate is the solution since the mesh elements are better sampled across the phys-

ical domains. The trade-off is that with higher accuracy the simulation gets larger,
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i.e. more computational resources are needed and the simulation time increases. To

estimate the optimal element size le, the Rayleigh wave speed needs to be obtained.

From the material properties and according to Equation 2.7 and Equation 2.8, the

Rayleigh speed for Chrome is given by

cR,Cr = ηCr

√

µCr

ρCr

= 3657.5
m

s
. (3.4)

The size of the mesh elements needs to be chosen in a way that the propagating

waves are captured accurately. It is recommended to use nmesh elements per wave-

length. [28] suggests to choose nmesh = 10, but a smaller number might be feasible to

speed up the simulation. The maximal wavenumber kmax is given by

kmax =
1

λmin

(3.5)

so the element size can be calculated from

le =
1

nmeshkmax

(3.6)

=
λmin

nmeshkmax

≈ cR
nmeshfmax

(3.7)

(3.8)

Remark: in this work, the same mesh size is used for both, the coating and the

base plate. The reason for this is that a difference in mesh size can cause reflection

artifacts at the boundary between the two materials. Since the Rayleigh speed for

the coating is higher than the Rayleigh speed of the plate, it is feasible to use the

coatings Rayleigh speed to determine the overall mesh size.

The element size is the most critical parameter since it has a huge influence on

the computational cost as well as on the accuracy of the overall simulation.
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3.2.3 Excitation

Since the objective of this research is to obtain a dispersion frequency-wavenumber

representation for multiple frequencies, the excitation needs to be an impulse that

contains those frequencies. In this research, a triangular pulse as in Figure 3.1a

is used. The Fourier transform of a triangular pulse is the squared Sinus cardinalis

(Sinc) function as shown in Figure 3.1b. The point in time where the pulse reaches its

maximum is denoted by tmax. The maximum frequency obtained from the excitation

of the Sinc function will be defined as the second maximum besides 0. This maximum

frequency is given by

fmax =
4π

tmax

. (3.9)

tmax tend

t

f(t) Λ(t)

(a) Triangular pulse function Λ(t) in the
time domain.

fmax

fmax = 4π
tmax

ω

F(ω) sinc2(ω)

(b) The Fourier transformed triangular
pulse is the sinc2(ω) function in the fre-
quency domain.

Figure 3.1: Excitation signal in time and frequency domain.

The excitation takes place at the upper right corner of the coating on the first node

at the edge. Using the first node at the edge has the advantage, that reflection effects

soon after the excitation are bypassed. A visualization of the excitation is shown in
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Figure 3.2. In this work, the triangular function is designed with tmax = 20ns which

allows excitation of frequencies up to fmax = 628MHz according to Equation 3.9.

3.2.4 Sampling

Sampling in conducted both in the time as well as in the spatial domain. Both

domains are subject to the Nyquist criterion. For the time domain, the Nyquist

criterion states the upper frequency limit for capturing a continuous signal to avoid

aliasing. The continuous signal needs to be sampled at least twice within the period

of the highest frequency according to

∆Tsampling =
1

2fmax

. (3.10)

In this work, a sampling time ∆Tsampling = 2 · 10−8s = 20ns is used to avoid aliasing

up to a frequency of fmax = 628MHz. The practically usable maximum frequency is

way lower though. In Abaqus, the sampling time corresponds to the sampling time

for the history output requests.

A similar relation can be established for the maximum sampling distance, i.e. the

maximum distance between two sample locations, as

∆X =
1

2kmax

(3.11)

with the maximum wavenumber to be captured kmax = 18, 000 1
m
. This gives a maxi-

mum sampling distance ∆X = 27µm.

For spatial sampling, all nodes between dstart = 3cm and dend = 7cm on the upper

surface of the coating are used.
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3.2.5 Abaqus FEA Model

In this research, two types of models are simulated. First, a coated plate with a uni-

form coating is simulated (see Figure 3.2), then a coated plate with a non-uniformness

in the coating is simulated (see Figure 3.3). Though the basic decisions regarding ac-

curacy and computational cost are the same for both models, constructing the models

within Abaqus differs. The simulation duration for both models is tend = 92µs.

Both FEA models use four-node plane stress elements (CPS4R) with two degrees

of freedom at each node (translation in x1 and x3 direction). On one side of the plate,

the elements are constrained by a boundary condition which fixes their x1-coordinates.

The excitation is conducted via a time-depending displacement boundary condition

applied to the top-left node as shown in Figure 3.2 and Figure 3.3. Italic numbers

are parameters that are changed between simulations, and only an example value

is used in the drawings. The nodes of the coating and plate are merged at the

intersection for both models. The uniform model’s coating is modeled from one part.

The non-uniform model’s coating is constructed from three parts: the boundary, the

non-uniformness, and the sampling nodes part. All three parts are merged at the

respective interfaces before the coating nodes are merged with the plate nodes.

The non-uniformness is always placed between the excitation node and the sam-

pling nodes with a certain distance to both. This way it is assured that the waves

generating the displacements at the sampling nodes passed the non-uniformness part

before. To avoid effects caused by the near field after the excitation, the distance

between the excitation node and the first sampling node is always at least 3cm. Both

models are meshed according to Equation 3.8 with an element length of le = 8.8µm.

Simulating one of the models on the Georgia Tech high-performance cluster PACE

[39] takes between 15 and 25 hours depending on the thickness and geometry of the

coating.
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200µm Coating
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Figure 3.2: Sketch of FEA model with uniform coating (not drawn to scale).

1mm 2mm 100µm 5mm 40mm 10mm

Excitation

Boundary part
Non-uniformness part

Sampling Part

200µm Coating

1mm Plate

Figure 3.3: Sketch of FEA model with non-uniform coating (not drawn to scale).
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3.3 Postprocessing

In the postprocessing step, only the out of plane displacement over time in x3-direction

is used. This information is extracted from the Abaqus simulation output database

file and is stored in a two-dimensional matrix. The two dimensional discrete Fourier

transform from Equation 2.51 transforms the data in a two-dimensional matrix in the

frequency-wavenumber domain for further analysis and processing.

3.4 FEA Outcomes

For this work, various coating thicknesses in the range between 10µm and 600µm

were simulated in Abaqus/Explicit. In the following analysis, only the uniform case

is analyzed. First, the theoretical idea and its complexity behind the analysis is

explained. Secondly, simulation results for different thicknesses are described and

evaluated.

3.4.1 Concept and Complexity Behind the Analysis

Setting up the FEA model and obtaining usable simulation results turns out to be

highly complex for the given material combination. The problem is challenging to

analyze mainly for two reasons:

1. The material properties, and especially the stiffnesses, of coating and plate

are comparably similar. While a related problem was discussed in [3, 4] with a

layered specimen of Aluminum and Tape, Young’s moduli differed by a factor of

70. This research analyzes the case when coating’s and plate’s Young’s modulus

are more similar and differ only by a factor smaller than 3.

2. The coating thickness is examined in a wide range from 10µm up to 600µm, i.e.

down to a hundredth of the plate’s thickness, making real physical experimental
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Figure 3.4: Analytical dispersion curves for a 200µm coating (red dashed), 1mm
plate (green dashed), and the layered combined system (solid blue).

measurement almost impossible and increases the demands on the simulation

accuracy.

In Figure 3.4 the analytically obtained dispersion curves for the coating, the place,

and the combined system are shown. The purpose of this research is to obtain infor-

mation about the coating, and not about the underlying plate. For this, the dominant

physics of the coating needs to be extracted without the influence of the coating. This

is done by analyzing the dispersive behavior of the specimen and extracting the coat-

ings modes, which change depending on the coatings thickness or other parameter

changes, as well as possible.

Since the coating thickness can be very small, the idea is to analyze the change

in dispersion curves for high frequencies f with f ∈ [10, 25]MHz and wavenumbers

within the range of k ∈ [500, 7000] 1
m
. The reason for this is that for these frequencies
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and wavenumbers the distance between the lower order modes of the coating (red), i.e.

A0,coating and S0,coating, and the lower order modes of the plate (green), i.e. A0,plate and

S0,plate, is maximized. Note that with increasing mode order, less energy is present

in the respective mode. The idea is to be able to analyze the lower order modes of

the coating without or only with little influence of the modes from the plate. It can

be seen that in the proposed frequency and wavenumber range the zero-modes of the

coating are present while only higher order modes of the plate show up. Another

thought should be noted: moving to higher frequencies and wavenumbers also means

approaching the domain where Lamb waves are having less influence and Rayleigh

waves, which concentrate their energy close to the boundary/surface, are getting more

predominant.

Those proposed phenomena can be seen in the dispersion graphs after simulation

like in Figure 3.5. There, high-intensity values are registered close to the origin,

because the lower order modes of the coating and of the plate are close and because

the most energy is contained for low frequencies and wavenumbers. It can be seen that

along the coating’s mode A0,coating the intensity values are high for higher frequencies

and wavenumbers, and that the modes of the plate shine out only around this area.

The location of where the coating’s A0 mode and therefore the higher-order modes of

the plate the show up is sensitive to the coating thickness. The area for wavenumbers

below k = 2000 1/m is not sensitive to the coating’s thickness and therefore, is not

further analyzed in this work, even though there might be still useful information

contained.

3.4.2 Analysis of Simulation Results

In this section, the simulated dispersion curves for different coating thicknesses are

discussed. When comparing these dispersion plots from different coating thicknesses

there are three main entities to look at: the gradient of the dominant lower order coat-
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ing modes, the con-/ divergence of the lower-order coating modes, and the appearance

of lower- and higher-order modes of the plate.

In the considered coating thickness range between 10 and 600 microns, coated

plates can be assigned to either one of three thickness sets according to their different

underlying phenomena. Even though there are discrete values given for each set

border, the borders should be considered as smooth and the effect of the respective

adjacent set shows up for simulations at the border of the given set limits.

⇒ 10µm - 60µm: Both plate and coating show dominant modes in this area as

shown in Figure 3.6. The plate’s lower- and higher-order modes are visible

almost everywhere above the coatings S0, which can be seen especially well in

Figure 3.6a. The coating is not dominant though but increases its influence

for thicker coatings. It can be seen that the A0 and S0 modes of the coating

are getting detached, diverge, and can be separated at an increasingly higher

frequency and wavenumber for decreasing coating thickness.

⇒ 60µm - 300µm: Between 60 and 100 microns the A0 and S0 modes of the coating

converge stronger (cf. Figure 3.7). This is specifically true for higher frequen-

cies where both modes merge and share the same locations in the frequency

- wavenumber domain. For frequencies higher than f = 10MHz, many of the

plate’s higher modes remain visible around the area where the coatings A0 and

S0 modes are. The gradient of the zero-modes of the coating is increasing for

increasing coating thickness.

⇒ 300µm - 600µm: As Figure 3.8 shows, for thicker coatings, the coating modes are

getting predominant in the simulated dispersion curves and the A0 and S0 modes

of the coating are merging together even for small frequencies and wavenumbers,

such that only the superposition of both can be seen. Additionally, intensity
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is shifted toward the origin with increasing coating thickness. The gradients of

the curves are not changing remarkably anymore.
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Figure 3.5: Analytical and simulated dispersion curves for a coating of 200µm
thickness. Blue values indicate a high intensity while red indicate a
low intensity. The yellow line with negative gradient in the top right
corner is connected to reflections and is not part of this discussion.
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(a) Coating thickness of hcoating = 10µm

(b) Coating thickness of hcoating = 40µm

(c) Coating thickness of hcoating = 60µm

Figure 3.6: Selected simulated dispersion curves for coating thicknesses between
10µm - 60µm.

43



(a) Coating thickness of hcoating = 80µm

(b) Coating thickness of hcoating = 170µm

(c) Coating thickness of hcoating = 260µm

Figure 3.7: Selected simulated dispersion curves for coating thicknesses between
60µm - 300µm.
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(a) Coating thickness of hcoating = 300µm

(b) Coating thickness of hcoating = 450µm

(c) Coating thickness of hcoating = 600µm

Figure 3.8: Selected simulated dispersion curves for coating thicknesses between
300µm - 600µm.
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CHAPTER 4

MACHINE LEARNING BASED THICKNESS INVERSION

The simulated dispersion curves described in the previous chapter can now be used

for a machine learning-based inversion procedure. The goal of this procedure is to

classify if a previously unseen dispersion curve belongs to a layered system whose

coating is satisfying the condition ’thick enough’ or not.

In the following, first, the feature extraction procedure, consisting of non-maximum

suppression and function fitting is described. In the second part of this chapter, the

extracted features are used and fed into a binary machine learning classifier. Various

classifiers are compared and evaluated

4.1 Feature Engineering

The feature extraction consists of two steps: non-maximum suppression to extract

the coordinates of high-intensity values around the modes and function fitting to fit

a linear function to these points to obtain features from this. Both methods are

discussed in the given order the following.

4.1.1 Non-Maximum Suppression

The 2D-FFT serves a two-dimensional array with intensity values in the frequency -

wavenumber domain for a given specimen. The modes of the respective specimen are

encoded in the 2D-FFT spectrum as coherent points of high intensity. These points

need to be extracted. For that, non-maximum suppression (NMS) is used. NMS

is a method from computer science and computer vision that presents a solution to

extracting the coordinates of these local intensity maxima.
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Figure 4.1: Schematic visualization of max-pooling with a kernel of size κ = 2
and stride = 2.

The first step of non-maximum suppression is the use of the max-pooling opera-

tion. The max-pooling operation reports the maximum output within a rectangular

neighborhood which is shown in Figure 4.1. The size of this neighborhood is a pa-

rameter which needs to be tuned according to the problem. This research proposes a

kernel size of κ = 15 discrete elements, where the physical size of one element differs

between frequency and wavenumber axis and can be calculated by Equation 2.48.

The next step is that a blank copy with the same input dimensions1 as the dis-

persion plot is created. The via max-pooling reported maximum value within the

rectangular neighborhood is then copied into all element cells of the blank copy which

are within the same neighborhood as the max-pooling operator in the original image

as shown in Figure 4.2.

In the following, the max-pooling operator is shifted element by element2 over the

entire input image and the two steps above are repeated, such that the copied image

looks like a down-sampled version of the original input only with the maximum values

within the respective neighborhoods.

1Assume that the input is padded accordingly. In this work, zero-padding on each side with
length padding= κ//2 is utilized.

2Assume that stride is equal to one.
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Figure 4.2: Schematic visualization of the copy step during non-maximum sup-
pression with a kernel of size κ = 2 and stride = 2.

In the last step, the input image and its copy are element-wise compared. This

way, the coordinates of the maxima can be extracted. The extracted maxima from a

simulated dispersion curve from a system with a 200µm coating thickness is shown

in Figure 4.3. To exclude the extraction of maxima for higher-order modes for small

wavenumbers, as well as noise in the overall dispersion graph, non-maximum suppres-

sion takes place in a certain wavenumber band-with and within a cone (pink lines)

only. Non-maximum suppression is conducted with Numpy [40] and Pytorch [41].

4.1.2 Function Fitting and Feature Extraction

The extracted maximum intensity values from the dispersion curves from the previous

section can now be used as an input to a simple linear fitting algorithm. For this,

Scipy’s [42] optimization package is used. The function to fit is a simple linear function

f(k) = a k + b, (4.1)

with the gradient a and the y-intercept b. The fitting function uses a non-linear least

squares algorithm as described in [43]. An example of a fit can be seen in Figure 4.4.
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Figure 4.3: Non-maximum suppression for a dispersion curve from a system
with a coating thickness of hcoating = 200µm.
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(a) Coating thickness of hcoating = 30µm
with NMS suppression and fitted func-
tion.

(b) Coating thickness of hcoating = 200µm
with NMS suppression and fitted func-
tion.

(c) Coating thickness of hcoating = 600µm
with NMS suppression and fitted func-
tion.

Figure 4.4: Selected simulated dispersion curves with non-maximum suppres-
sion and corresponding fit for coating thicknesses between 30µm -
600µm.

This approach works well in the considered thickness range from 10µm up to

600µm and was not tested for thicknesses outside of that range. Physically, the

understanding of this approach is that especially the gradient is sensitive to a change

in the coating’s thickness. The reason for this is that the coating’s A0 mode diverges

more and more from its S0 mode with decreasing coating thickness, ’pulling’ the

overall gradient to a smaller value. Only for really small coatings below 30µm, the

gradient might increase again. This is caused by the coating’s A0 mode leaving

the analyzed cone area such that it has no or limited weight on the fit and only
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the S0, which is naturally having a higher gradient, is analyzed. For thick coatings

above 300µm the gradient is not changing severely anymore since the zero-modes are

converged already.

One thing to note: since Equation 2.6 provides that k = 2π
cp
f , with cp ≈ cR for high

frequencies and wavenumbers, the gradient could be used to estimate the Rayleigh

frequency. This is not further investigated within this research.

4.2 Applying Machine Learning Classifier

As already stated earlier, one goal of this research is to develop a procedure that is

capable to classify if the uniform coating of a layered specimen has a certain thickness

or not. A coated specimen is classified as, i.e. the labels are, thick enough or not thick

enough, respectively. Exemplary and without loss of generality, a coating thickness

of hcoating = 200µm is chosen to be the threshold between thick enough and not thick

enough. The scheme was tested with other thresholds and worked analogously. With

this, it is

not thick enough ⇐⇒ thick enough

hcoating < 200µm ≤ hcoating

The extracted gradient and y-intercept from the previous section are now used as

features for thickness classification. Since only two features are used, a visualization

of the complete feature space is possible and can be seen in Figure 4.5. Each data

point corresponds to the simulation of one coated specimen with respective coating

thickness and is color-coded according to its thickness classification. Even before

applying a machine learning classifier, it can be seen that the data points seem to be

linearly separable.
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Figure 4.5: Feature plot for dispersion inversion with fitted function of shape
f(k) = a k+b and labeling according to threshold hcoating = 200µm.
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The first step of applying a machine learning classifier is to normalize or stan-

dardize the input data. The goal of this is to make sure that the variance of each

feature is in the same order of magnitude as the other features-. This ensures that

no feature is dominating just because of its input distribution. Each data point xin,i

of the input dataset xin,i ∈ Xin is scaled according to

xscaled,i =
xin,i −min(Xin)

max(Xin)−min(Xin)
. (4.2)

With this step, the feature values are normalized to the range between zero and one.

The obtained data can now be fed into various classifiers. The analyzed classi-

fiers are k-Nearest Neighbor (kNN) [44], single layer perceptron [45], Support Vector

machines (SVM) with and without Radial Basis Function kernel [46, 47], Gaussian

processes (GP) [48] and feedforward networks (MLP) [33, 49]. The algorithms are

then evaluated with k-fold cross-validation for k = 5.[50] The results after hyperpa-

rameter tuning are displayed in Table 4.1.

Classifier
Accuracy
score

Standard deviation
after cross-validation

1-Nearest Neighbor 0.903 0.123
5-Nearest Neighbor 0.917 0.107

Perceptron 0.94 0.074
Linear Support
Vector Machines

0.947 0.066

Radial Basis Function
Support Vector

Machines
0.954 0.062

Gaussian Processes 0.903 0.132
Feedforward Network 0.917 0.107

Table 4.1: Comparison of accuracy and standard deviation after 5-fold cross-
validation and hyperparameter tuning.

It can be seen that all classifiers perform well on the given dataset of 134 simulated

uniformly coated plates and achieve high accuracy of over 90%. Support Vector
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machines, especially Support Vector machines with a Radial Basis Function kernel

(RBFSVM), tend to have the highest accuracy with the smallest standard deviation

after cross-validation, while one-Nearest Neighbor (1NN) and Gaussian Processes

perform not as well.

Figure 4.6 provides a visualization of four selected classifiers with the lowest (1NN

in Figure 4.6a) and highest (RBFSVM in Figure 4.6c) accuracy, where the red area

describes where a feature combination would be labeled as not thick enough, and the

green area where a feature combination would be classified as thick enough. In this

research, scikit-learn [51] was used for the implementation of the machine learning

algorithms and their evaluation.
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(a) kNN classifier with k = 1.
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(b) kNN classifier with k = 5.
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(c) SVC classifier with RBF kernel and reg-
ularization parameter C = 4 and kernel
coefficient gamma = 2.
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(d) MLP classifier with three hidden layers
of size (20, 50, 30) and ReLU as activa-
tion function.

Figure 4.6: Selected machine learning classifiers for a two-dimensional thickness
classification problem.

55



CHAPTER 5

DEEP LEARNING BASED UNIFORMNESS INVERSION

The machine learning approach for inversion from the previous section works well for a

uniform thickness but reaches its limits when a non-uniformness is incorporated in the

coating of a simulated specimen. A non-uniform simulation model was described in

Figure 3.3. Comparing the dispersion curves of a non-uniform coating with its uniform

counterpart, shown in Figure 5.1 exemplary for a coating thickness of hcoating =

200µm, a depth of the gap as the non-uniformness of hgap = 100µm (which is a

reduction of the coating thickness by half) over a length of lgap=1.2cm, shows, that

there is a difference in the dispersion figures, but neither a fitted gradient or y-

intercept would change largely. This is not different for other coating thicknesses or

gap depths. Hence, the features used in the machine learning-based inversion process

are not sensitive to a non-uniformness in the coating.

(a) Coating thickness of hcoating = 300µm
without non-uniformness.

(b) Coating thickness of hcoating = 300µm
with a gap of depth hgap = 200µm as a
non-uniformness.

Figure 5.1: Comparison of dispersion curves from a specimen with uniform and
non-uniform coating thickness

Not merely the manually crafted features from the previous chapter do no work

for in this problem. In general, the changes in a dispersion graph caused by a non-
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uniformness are rather small. Even a tedious manual analysis of comparing various

coating thicknesses and gap depths did not result in the recognition of any quantifiable

pattern, such that manual feature engineering could have taken place. Thence, the

idea is to let a convolutional neural network (CNN) learn the features by itself.

In the following sections the data acquisition pipeline and used dataset for the

CNN is described. Then an overview about the developed and used network archi-

tectures is given. Last, the network’s performance is evaluated.

5.1 Data Acquisition and Dataset Statistics

Since the features for classification should be learned by the CNN itself, it requires

significantly more data to train than the simple machine learning classifiers from

the previous section. To obtain the data for CNN training, 670 simulations with an

average simulation and post-processing CPU time of 15 hours were conducted on the

Georgia Tech PACE cluster [39]. An overview of the simulation space can be found in

Figure 5.2. In this figure, each dot represents one conducted simulation of a specimen

with given coating thickness hcoating and depth of the gap hgap as a measure of the

extend of the non-uniformness. Simulations with a non-uniformness, i.e. a gap depth

bigger than zero, are coded with red circles while uniform simulations are coded with

a green diamond.

5.1.1 Data Tightening

With these simulations, a problem arises: there are a lot of different simulations

possible with non-uniformness for a given thickness since there are different variations

for a non-uniformness, but only one version with uniform thickness per thickness is

possible. This leads to a distribution of the input data as shown in Figure 5.2 with

almost 80% of the simulations belonging to non-uniform coatings. Additionally, most

simulations are falling into a coating thickness between 200µm and 300µm. A non-
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Figure 5.2: Simulation space for all 670 simulations with 148 (= 22.09%) sim-
ulations which are uniform (green diamonds) and 522 (= 77.91%)
simulations with non-uniformness (red circles).

uniform data distribution like this makes learning harder for the network. To face this

problem, a more evenly distribution of simulations over the entire domain is created

by restricting the data set using a random selection of simulations only for training

as it is shown in Figure 5.3.

5.1.2 Data Preprocessing

The first step of the development of a neural network is specifying the shape of the

data at the input side. The Fourier transformed data from the raw displacement

data of the simulations is stored in a file with high resolution, but a huge size too.

To decrease the size of the input, dispersion curves are plotted from the 2D-FFT

transformed displacement data and are stored as an image in PNG format. This
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Figure 5.3: Simulation space for randomly selected 363 simulations with 148 (=
40.77%) simulations which are uniform and 215 (= 59.23%) simula-
tions with non-uniformness.
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Figure 5.4: Example PNG network input of contour plot with three-channel
RGB colors of a specimen with coating thickness of hcoating = 200µm
for a frequency f in the range 0MHz ≤ f ≤ 25MHz and a wavenum-
ber k with limits 0 1

m
≤ k ≤ 8000 1

m
.

is feasible since PNG supports lossless compression as described in [52]. With this

procedure, the size of the input data can be reduced by a factor of 30. An example

of this is shown in Figure 5.4. The intensity values from the Fourier transform are

color-coded as in previous dispersion plots and stored in this way with three color

channels on an RGB scale. This approach is valid since the network does not care

about absolute values and learns differences between the provided dispersion plots.1

Since PNG files are generally referred to as images, this work will use the word images

to refer to the dispersion curve inputs to the neural network too.

1Note that the training process takes actually takes place on grayscale images as described in the
next section.
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The created PNG images are then randomly shuffled and assigned to the train and

the evaluation set, such that 70% of the data is used for training and the remaining

30% are used for testing.

5.2 Network Design

The network learning process consists of training on the training dataset and testing

on the test set. Since the amount of data available, i.e. the number of simulations

conducted, is fairly limited, the evaluation and test set are merged into one set.

The network by itself consists of two parts: data loading and passing the loaded

input data through the convolutional layers. Both will be described in the following.

5.2.1 Data Loading

Like with most neural networks, the proposed networks in this work use batches of

input images for training. For most training in this research, a batch size of 32 or 48

was used. The process of loading a random batch of images, passing them through

the network, calculating the loss of each image, differentiating loss with respect to

the network weights, and updating them accordingly, is referred to as one epoch of

training.

Within each epoch, each three-channel input image is loaded and converted to

a grayscale image as shown in Figure 5.5. With this conversion to a single-channel

representation of intensities, the ambiguity of color selection during image creation

from the preprocessing step is eliminated. A further advantage of using only one

channel is that the network needs to process a smaller amount of data, but with the

same information content.

After conversion to a one-channel image, the image is resized to a rectangular

input of a given resolution. This research proposes an input resolution of 1024×1024

to capture even smaller changes in the image, but smaller input resolutions might be
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Figure 5.5: Example network input of contour plot with one channel grayscale
colors of a specimen with coating thickness of hcoating = 200µm for
a frequency f in the range 0MHz ≤ f ≤ 25MHz and a wavenumber
k with limits 0 1

m
≤ k ≤ 8000 1

m
.

62



feasible according to the problem. It needs to be noted that the input resolution is a

critical hyperparameter of the learning process. Using a resolution that is too small

removes too much high-frequency information in the image, while a resolution chosen

as too big slows down the learning process a lot. Different input resolutions for the

same dispersion data are shown in Figure 5.6.

(a) 10× 10 pixel resolution input image. (b) 64× 64 pixel resolution input image.

(c) 224× 224 pixel resolution input image. (d) 1024×1024 pixel resolution input image.

Figure 5.6: Examples of different network input resolutions for the same simu-
lated dispersion curves.

5.2.2 Network Architecture

Within this research, two convolutional neural network architectures have been an-

alyzed: SimpleWaveInvNet and a modified variant of ResNet. In the following, the

detailed architecture of SimpleWaveInvNet and modified ResNet is further discussed.
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SimpleWaveInvNet

SimpleWaveInvNet is a comparable simple network for thickness inversion developed

in this research to capture small changes in the input by using the smallest number

of parameters possible. It consists of three layer parts:

• Convolutional layers, consisting of four 2D convolutional layers, 2D max-pooling

after the first, third, and fourth convolutional layer, ReLU as activation function

after each convolutional layer, a dropout layer in front of the last convolutional

layer and a 2D batch norm after the last convolutional layer.

• Average pooling layer which conducts 2D adaptive average pooling to a 5 × 5

output. This layer allows using of variation in the input size to the network

without the need of restructuring the entire network architecture.

• Fully connected layers, comprising three fully connected layers with a dropout

layer in front of the first and second fully connected layer, and a ReLU layer

behind these two layers.

The loss function for the SimpleWaveInvNet is chosen to be the negative log-likelihood,

or NLLLoss [53], which is a softmax activated version of the for two class classification

established Cross-Entropy loss function. A schematic sketch of SimpleWaveInvNet

can be found in Figure 5.7.

ResNet18

Additionally to SimpleWaveInvNet, a modified version of the popular CNN backbone

ResNet has been used. One of ResNet’s idiosyncrasies is its skip or shortcut connec-

tions, which allow the data to skip one or more layers so that the input of it will then

be added to the output of it for further processing. This allows to reduce the training

error for deep networks as well as it improves the accuracy since it allows to train
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Figure 5.7: Schematic Drawing of SimpleWaveInvNet.
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deeper networks. For a deeper understanding of ResNet, the author recommends [54]

for further reading.

In this research, ResNet18, which means a ResNet version with 18 layers is utilized.

The architecture is forked and the last linear layer is truncated. Instead of the linear

layer with 1000 outputs from the original ResNet18, an adaptive average pooling layer

is installed to allow the network to be capable to operate on input data with varying

sizes. Behind the adaptive average pooling layer, a linear layer maps the network

outputs to the two output classes.

For this network, the chosen loss function is the Cross-Entropy loss. ResNets with

more layers have been tested on the given dataset but did not succeed in the learning

process because of the limited size of the training set.

5.3 Network Performance

The network performance is evaluated for SimpleWaveInvNet and ResNet18 sep-

arately. First, SimpleWaveInvNet is discussed, followed by a discussion of why

ResNet18 might not have learned well.

Next, accuracy is used as a performance metric. Accuracy is simply defined as

the number of correct predictions divided by the total number of predictions. Since

this work analyzes a binary classification problem, accuracy can be defined by

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

where TP = true positive, TN = true negative, FP = false positive, and FN = false

negative.
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5.3.1 SimpleWaveInvNet

SimpleWaveInvNet was trained over 150 epochs with a batch size of 32. Figure 5.8

shows the training loss history (a) and training accuracy history (b) for both the

training (blue) and the validation set (red).

It can be seen that the training error for both training and validation set is de-

creasing fast in the beginning and then decreases slower until the end of the training

process. The shape of the loss curves complies with the expected learning curves of

a neural network.

The accuracy is increasing heavily in the beginning and then reaches a plateau,

both for training and validation set. Again, the overall learning curve complies with

the expected shape. It needs to be noted that the validation accuracy varies way

more than the accuracy of the training set, which accompanies the high noise in the

validation loss. A reason for this might be the limited data set size as well as a batch

size chosen to be too small. With this, some validation sets might not be a good

representation of the overall dataset.
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(a) Training loss history.
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(b) Training accuracy history.

Figure 5.8: SimpleWaveInvNet training performance after 140 epochs and me-
dian filtering.

In Figure 5.9, a confusion matrix from the evaluation set for SimpleWaveInvNet

is displayed. The confusion matrix shows the ground truth labels on the vertical and
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Figure 5.9: Confusion matrix for SimpleWaveInvNet.

the predicted labels on the horizontal axis. An optimal network would have 100% in

the top left corner, meaning all data which is not uniform is classified as not uniform,

and vice versa with uniform classification on the bottom right. For SimpleWaveIn-

vNet, the majority of not uniform samples are classified correctly. Classifying when a

sample actually has a uniform coating is not as unambiguous as for the non-uniform

case, but shows a better performance than 50% still. This way is demonstrated that

SimpleWaveInvNet is able to provide a uniform/non-uniform thickness classification.

Visualizing the classification labels of the test set after training shows that Sim-

pleWaveInvNet struggles to classify correctly for coating thicknesses between 200µm

and 300µm, but classifies most data above that range correctly. This can be seen in

Figure 5.10. A reason for this might be that the dataset is not uniformly distributed

over the entire parameter set. This way the network learns a shortcut: it learns the

gradient relation from the previous chapter and learns that most data points over a

certain coating thickness are more likely to be uniform.
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Figure 5.10: Classification of SimpleWaveInvNet for test set of 105 simulations
with labels provided by network (green diamonds = uniform) and
(red circles = not uniform).
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5.3.2 ResNet

The same performance measures as for SimpleWaveInvNet are used for an evaluation

of ResNet18. Comparing the training loss and training accuracy from Figure 5.11

shows that the validation loss and accuracy is fluctuating largely. Both validation

measures do not show any expected and needed behavior, while the training loss and

accuracy have the expected shape.
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(a) Training loss history of ResNet for 140
epochs after median smoothing.
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(b) Training accuracy history of ResNet for
140 epochs after median filtering.

Figure 5.11: SimpleWaveInvNet training performance.

Visualizing the network performance on the testing dataset in Figure 5.12 shows,

that the network learns to simply classify everything as uniform. A reason for this

bad performance could be the small dataset size for training combined with a network

which has too many parameters to train. Additionally, only a smaller batch size of

20 was possible due to storage limitations that might have a negative impact on the

training process as well.
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Figure 5.12: Classification of ResNet for test set of 105 simulations with labels
provided by network (green diamonds = uniform) and (red circles
= not uniform).
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CHAPTER 6

CONCLUSIONS

The goal of this work is to obtain information about the material properties of a

coating in a layered system with a plate via machine and deep learning. Therefore,

a coating’s thickness and uniformness are examined. This work shows (1.) that a

machine learning approach is highly capable to invert the coating thickness and (2.)

that a deep learning approach is capable to classify if there is a non-uniformness in

form of a gap in the coating.

First, in this research, the forward problem is solved with a finite element analysis

approach. After applying signal processing, the outcome of the forward problem is a

frequency - wavenumber dispersion representation with characteristic information. To

obtain information of the change in dispersive behavior for a variation in the coating

thickness, various systems with varying coating thickness are simulated. Conducting

a set of simulations with various uniform coating thicknesses shows that coating

thicknesses can be classified into one of three groups of different modal behavior.

The simulated dispersion representations are then used as an input for the inversion

procedure.

For a thickness inversion, a machine learning based-approach is developed to clas-

sify the thickness of uniform coatings. For this, various machine learning classifiers

are investigated. It is shown that the proposed machine learning approach is capable

of successfully classifying uniform coating thicknesses. Additionally, it is shown that

this approach reaches its limit for non-uniform coatings. The complexity is here that

the material properties of coating and plate are comparably similar. This leads to

only minor changes in the respective dispersion curves when a major non-uniformness

is introduced into the coating.
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To overcome this problem and classify the uniformness of a coating, a deep

learning-based approach is proposed. The deep learning approach uses convolu-

tional neural networks, hence his approach is data-driven. It is demonstrated that

a convolutional neural network is capable of learning if a given specimen contains

a non-uniformness in the coating or not for the given material combination in the

investigated coating thickness range.

Recommendations for future work include increasing the training dataset, i.e.

simulation of data more uniformly over the entire simulation space. For the input to

the network, a better representation can be developed. This can be done either by

developing a method that creates the network input data directly from the simulated

displacement data without creating a dispersion plot in PNG format first, or by

improving the network input after the creation of the dispersion graph. Since data

underneath the A0 and S0 modes is not containing physically meaningful information,

learning an additional neural network as an encoder could decrease the input size of

the convolutional neural network and increase training performance this way. To

increase the receptive field of the CNN, adding convolutional layers according to

the pyramid scene parsing network [55] is another recommendation. Finally, it is

recommended to evaluate the model on real experimental measurements
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