Gaussian Processes for Automatic Controller Gains Tuning in
Robotics and Control

Schmitz, Maximilian , Lu, Yuwei , Gray, Justin , Oh, Jaeyo , Kanwar, Bharat

Abstract—Tuning controller parameters is one
of the most fundamental problems when designing
controllers for dynamic systems and is usually
done manually. To automate this, methods from
machine learning, such as Bayesian Optimization,
have been used. The downside is that this may
lead to safety-critical failures when evaluating
different controller parameters on a real system.
This problem is solved in this paper by using an
optimization algorithm, SafeOpt, which, given an
initial, low-performance controller, automatically
optimizes the parameters of a control law to
guarantee safety. The controller parameters are
evaluated by a performance function modeled
by a Gaussian process. Only parameters with a
performance higher than a certain threshold with
high probability are considered as safe.

I. INTRODUCTION

Tuning a controller is a time consuming and
challenging task. It requires significant domain
knowledge or experience. In this paper we provide
and evaluate a method for automatic controller
tuning given by [2]. This method automatically
tunes controller parameters without requiring a
model of the underlying, dynamic system while
explicitly avoiding the evaluation of unsafe controller
parameters. The controller parameters are therefore
evaluated by a performance function which is initially
unknown where we use Gaussian processes (GPs)
to approximate this performance function. In the
following, first, we outline Gaussian processes and
present a mathematical intuition. Then, we explain in
more detail how to use GPs for automatic controller
tuning and tune one- and two-dimensional examples.
Finally we add sensor noise and disturbances and
examine possible downsides of this approach.

ECE6254 -
Georgia Institute
{ylu645,jgray73,0j,

The authors are members of the class
Statistical Machine Learning at the
of Technology, United States. Email:
mschmitz7,bkanwar3}@gatech.edu

II. GAUSSIAN PROCESSES

Gaussian processes are a powerful tool in machine
learning which allows for model prediction by
combining a prior model and data with real-time input
data [I]. GPs are random processes which make
inference and learning relatively easy (cf. [4]).

For a general regression problem with a given
training data set, there are infinitely many functions
to fit the data (hypothesis class |H| = oo). The
question is then which function fits the data the
best. Gaussian processes address this by assigning a
probability to each of these functions h € H.

A. From Gaussian random wvariables to Gaussian
processes

A Gaussian random variable (GRV) is a random
variable which is based on a normal (Gaussian)
distribution. A GRV =z is defined by z € R", z ~
N (pin,¥) with mean pu, and covariance matrix .
Therefore, a Gaussian process is a generalization of
a GRV and can be though of as an extension to it.

The main difference is that a GRV describes a
probability distribution for vectors or scalars while
stochastic processes as GPs define properties of
functions. [3][6]

Definition 1. Let m : X — R be any function and
let £ : X x X — R be a valid covariance functionl]
A Gaussian process f ~ GP(m,k) is a probability
distribution over the function space f : X — R such
that every restriction to finitely many function values
fx isa GRV, fx ~ N(mx,K,). A GP is completely
defined by its mean function m(X) and its covariance
function k(z,z') with

X =[xy, 29,...,2,) € RP"
f(X) = {f(xl)vf(xQ% c af(xn)}T €R"
m(X) =E[f(X)] € R"

Kn S Rnxn, {K’I’L]’L] = k($i7$j)

'A function k(-,-) is a valid covariance function if the
corresponding matrix k(X,X) is positive semidefinite (K, =
k(X,X) > 0) for all X.

k(z,2’) = E[(f(z) — m(z))(f(2") —m(a")))].

K, is defined by the covariance function k(z,z’)
which is evaluated pairwise between all training
points. The kernel receives two points z,z’ € R as
an input and outputs a scalar which is a similarity
measure between those two points. Loosely speaking,
the entry [K,];; describes the influence of point i to
point j. Since the kernel describes the similarity, the
choice of the kernel defines the shape of the fitted
function.

We can think about a GP as a very long vector
where each entry is a GRV, so that a GP is a collection
of random variables, any finite number of which have
a joint Gaussian distribution.[I]

B. Academic Exzample of GPs

Consider a simple 1-d regression problem
fR—=Rax +~ f(zr). For Gaussian process
regression, the first step is to set up a prior
distribution over functions. This represents the
knowledge about functions we expect to observe
before seeing any data and is shown in figure [T on the
left. Without loss of generality, the mean can be set
to zero which is a common assumption in machine
learning [4]. Besides the mean, we can evaluate the
variance at each sample point x;, ¢ = 1,...,n too.

Suppose further that we have been given a data set
D = {(21,y1)} consisting of one single data point.
Then, we only want to consider functions from our
hypothesis set which are passing through this point
(or are sufficient close in case we assume additional
noise). We can see that the variance is (almost) zero
at the sample point since we assume that the ground
truth function passes through our sample point (figure
(middle)). This combination of data and prior
distribution is then called posterior distribution. The
more samples are added, the better the mean fits the
true function as seen in figure (1| (right).

For the covariance function, a squared exponential
kernel (SE) is used. The SE kernel is the most widely-
used kernel within the kernel machines field according
to [1], but another kernel like the Matérn kernel which
is used in [2] work too. The squared exponential
kernel is given by ksp(r,2’) = oip exp(—(x;lﬁl)z)
and includes the two hyperparameters variance ogg
and the length scale [. Since the main objective
of learning with Gaussian processes is optimizing
the hyperparameters for the specific problem, we
give a quick overview about what a change in the
hyperparameters means.

ppppppppppp

Fig. 1: 1d-example of a Gaussian process. The blue
line indicates the unknown ground-truth function and
the dashed red lines are sample functions. Prior GP
(left), Posterior GP with 1 sample point (middle), final
Posterior GP after 8 measurements (right)

Fig. 2: Variance comparison. osg = 0.5 (left) and
osp = 1.3 (right)

a) Variance ogg: Loosely speaking, the variance
identifies how far a data point is allowed to deviate
from the data points next to it (how many points are
considered is specified by the length scale below).In
figure 2] we can see the uncertainty for the kernel with
a smaller ogg on the left is smaller compared to a
kernel with larger cgg on the right.

Fig. 3: Length scale comparison. [= 0.3 (left), [= 4
(right)

b) Length scale l: The length scale configures
how much the considered functions may vary.
Functions are allowed to vary rapidly if the
characteristic length-scale is chosen short while
increasing the length scale then increases the banding,
as points further away from each other become more
correlated which is shown in figure [3

C. Updating procedure for GPs

For the next sections we continue considering a
discrete view of the distribution. Instead of finding
an implicit function we want to find function

values at distinct test points x;. With Bayesian
inference we get to the posterior by combining
the prior distribution with the measured data

D, = (XvY) = {(xlayl)v s (xn,yn)} to

(%) = ky(2) (Kn + 0'31) Y (1)
o2 (x*) = k(2*, 2%) — k,(a¥) (Kn + Uil)il k2 (2%)
(2)

where z* is the new input point, the covariance

matrix K, = k(X,X) € R"™" has entries
K., k(zi,z;), i,7 € {l,...,n}, the vector
k,(z*) = [k(z*,21),...,k(z* x,)] contains the

variances between the new input point z* and the
observed data points D,. The identity matrix is
denoted by I € R™"*™. A further extension in here is
that it is assumed that the training vector observed
Y € R" is corrupted by Gaussian noise with mean
zero and variance o, i.e. Y = f(X) +e.

III. AUTOMATIC CONTROLLER TUNING WITH
(GAUSSIAN PROCESSES

This section introduces how to tune a controller
automatically with incorporating Gaussian processes.
First, a nonlinear, dynamic control law is given by
u, = g(Yk, 'k, a,) which is parameterized by a,, € A
at iteration n, where yy, are the (noisy) measurements,
r; is a reference signal, and uy is control actions at
time step k. At each iteration, the used controller
parameters are evaluated by a performance measure,
J(a) : A +— R. The goal is to tune the parameters
to maximize the performance measure for a safety-
critical system. According to [2], there is no prior
knowledge on the model of the dynamic system and
on the performance measure, except an assumption
that an initial set of the parameters guarantees
stability and safety. The safety criterion is set as a
performance threshold, J,in, so that J(a,) > Jmn
must be satisfied with high probability. The intuition
is that unstable controller gains will lead to a low
performance and are then and are likely to be excluded
through the threshold then. This guarantees safety
and gives the algorithm its name SafeOpt [2].

Since the performance function is initially unknown,
it is modeled by a GP to approximate J(a). The GP
framework allows to predict J(a*), a* € A, based on n
past observations, D,, = {a;, J(a;)}?_, where J(a) =
J(a) +w with w ~ N(0,02). From the observations,
the mean and variance of the prediction are given as

equation (1) and (2) with .J, and a* instead of Y and
x*, respectively.

To obtain the next sample locations, Bayesian
optimization is then used. In this paper, GP-
based Bayesian optimization methods choose new
parameter sets for which the performance is the most
uncertain, mostly within a safe set. Recalling the
safety constraint from above, the safe set is defined
by § = {a € A|J(a) > Jin}. But, SafeOpt considers
not only the safe set which includes the set of potential
maximizers, M, for exploitation, it also includes the
set of potential expanders, G,, for exploration.[2]

In summary, the algorithm starts with an initial safe
parameters and unknown performance measure. Then,
a new evaluation point is computed via Bayesian
Optimization, and the measurement is obtained.
Finally, GP based performance function is updated
with the new point and the measurement. It is iterated
until either the process is aborted or a desired criterion
is reached.

IV. SETUP OF SIMULATION ENVIRONMENT
(QUADROTOR)

The quadrotor simulation environment used is
strongly based on work of [I1] which is available
online. It provides a nonlinear 6 DOF model of a
quadcopter with freedom about three translational
and three rotational directions. Since SafeOpt aims
to tune a controller without a distinct model of the
system, a detailed description of the model is omitted.

For the controller, a basic PID-controller is chosen
for each of the six dimensions. We define the linear
control law for controller ¢, i =1,...,6 at time k by
ik = kip(Tig —rig) +kii | (Tig — rip)dT + kia®ig
with the controller gains k;,, k;;, and k;4 for
the proportional, integrative and derivative part,
respectively. In the following, the integrative part will
be set to zero most of the time.

V. QUADROTOR CONTROLLER TURNING

With the theoretical foundations from the previous
sections, the SafeOpt-algorithm can be applied to the
given quadrotor controller. This is described in the
following. While [2] uses a linear quadratic state and
input cost and defines the performance as the cost
improvement relative to the initial state cost, we use
a performance metric based on the response of our
system to a step input. This is feasible since the input

trajectory used in this example is a step input only.
The performance function is given by

100 100
P = (3)

_W-r: 0.1rt + 20s 4+ 2ss + oc

with the performance weights w = [0.1 2 2 1}

which have been manually tuned and the system

response metric r = sS OC}T. A detailed
explanation about how to compute the system
response metric can be found in [§]. A summary of
the entire algorithm we used is found in algorithm

In the following, we applied this algorithm to the
quadrotor simulation environment, tuned controller
gains first just for one and then for multiple
dimensions. Even tuning the controller for one
dimensions leads to two controller gains to be
estimated (k, and kq). As a last step we added noise
to our model to include some more uncertainty and
estimate the robustness of the algorithm by adding
disturbance too.

[T’t 08

Algorithm 1: Apply SafeOpt-algorithm to
quadrotor controller

Result: Obtain improved controller gains

Input : k., iterations for optimization;
initial gains zp;

create linearly space parameter set;

initialize kernel with GPy;

set initial gains to zg;

simulate one time step and obtain zq;

compute rt, 0s, $S, oc;

obtain performance P to zy;

create GP with P and zp;

add GP to optimization routine;

for k < ke do
get next controller gain z;41 through

Baysian Optimization;
simulate one timestep and obtain zj,1;
compute rt, 0s, ss, 0c;
calculate P;
add zpy1 to optimization routine;
end

A. Results of one dimensional tuning

For the one-dimensional example, the quadrotor
learns optimal controller gains for the position
controller in z-direction. The other two directions are
stabilized by separate controllers.

10 £
* x
05
05
» .
0.0 21 40
0 5 10 15 2 o o 5 10 15 20|
time (s) 0 o
c=11l=1 (T o
0515 1 10
0,5 2ok

15,

zL0

0.5
-

0.0

0 5 10 15 20

N
. 4 .
ime (s W
o=0.5,1=05 e AT
25, %

time (s)

Fig. 4: Trajectories and performance function for 1d-
example with different variance and length scales.

Each controller conducts 30 iterations to obtain the
optimal controller gains. This is done for different
hyperparameters (variance and length scale) of the
kernel.

In figure [4 on the upper left and on the upper
right the length scale is [= 1 and the variance is
o = 1 and o = 0.5, respectively. Here, reducing the
variance causes the cost function to hone in on the
optimal gains more quickly. However, when reducing
the length scale and keeping the variance constant, it
allows for more peaks and valleys in the cost function,
making the algorithm test more points that would
otherwise lead to more oscillatory behavior. This is
shown in figure [4 in the upper right with [= 1 and
in the second row with length scale [= 0.5. The
blue trajectory is the optimal one with the highest
performance.

B. Results from multi dimensional tuning

For multi dimensional tuning, in case of 2-d tuning
the z-, y-direction or z-, z-direction and in case of
3-d tuning the z-, y-, and z-direction are controlled
each by a separate controller. For simplicity, we
assume that each axis is independent. To optimize
the parameters for this multi dimensional example,
the performance measures are combined by averaging
them. Figure [f| shows that the controller is optimized
to the best trajectory for each direction among
variations. The result for x-, z-direction is presented
in the video.

Figure [6] shows the result for 3-dimensional tuning.
To control 3 directions, 6 parameters are used. Initially
each parameter set consists of a set of 100 values.
However, this huge parameter space qickly causes

o 5 10 15 20 25 30

memory error for multiple dimensions.This is, tuning
was conducted with the reduced number of samples for
each parameter resulting in a more rough resolution
of the parameter space. Despite of the reduction,
as shown in the figure [6] the algorithm works for
this example too. Comparing to the 1-dimensional
example, there are more unstable approximation
during learning. However, these results presents the
expandability of the algorithm to a n-dimensional
case.

time (s)

Fig. 6: Trajectory of quadrotor for 3-d(x, y, z) control
with reduced parameter set.

C. Adding noise to model

One major issue when tuning a controller is noise
in the measurements. For applying noise, we used the
1d-tuning example with two controller gains to be
tuned. We added Gaussian noise with zero mean and
standard deviation o, to the z-position in front
of the controller input. Recall that usually o,ise #
0, since we have a distinction in measurement and
process noise. We tried different noise and selected
the biggest value for 0,5 which still leads to stable
results. This is shown in figure [7}

Comparing to the tuning without noise, the
algorithm needs more attempts to find optimal or
even stable controller gains. Most of all, the algorithm
explores a lot initially which leads more often

0 5 10 15 20
time (s)

Fig. 7: Trajectories and performance function for
variance o = 1, length scale | = 1 (noisy setup).

to unstable configurations. This may be improved
by choosing better boundaries of the performance
function.

At this point it need to be pointed out that the
underlying controller was not designed with noise
in mind. Since a PID-controller was used, reducing
the derivative part may lead to better results. An
investigation of this is not part of this paper.

D. Adding disturbance to model

Gaussian noise disturbance rejection is also
something worth looking into for a quadrotor system
to counter the disturbances present from wind and
other environmental factors. To simulate this, 0-mean
Gaussian noise was added to the position and heading
angle of the quadrotor. The disturbed system was
tested on a 1-d step response. The standard deviation
of the added noise was increased in increments and the
SafeOpt algorithm was run over 30 trials to optimize
to the best performance at that disturbance level.

After adding the

] oinm \ Performance ‘ disturbance, the
0.000 182.5 performance function
0.003 733 also had to be slightly
modified. The previous

0.005 57.1 version of this function
(high oscillations) over-emphasized the

0.01 9.35 (crashed) negative effect of
TABLE I: Performance oscillations. This

penalty turned out to
be too strict since the
addition of disturbance
resulted in more
oscillations. The peak response value was also
redefined as the maximum deviation from the

Metric for Disturbance of
the form: NV(0, o2)

X (m)

time (s)

Fig. 8: Quadrotor Trajectory (optimal in blue) and
Value function for 1d step response with ¢ = 3 mm
as the disturbance

desired state to limit that quantity’s overall effect
on the performance. Overall, these changes rewarded
low steady-state error without over-penalizing for
oscillations and slower responses.

Table [I] outlines the performance metric for the
optimal parameter set as a function of the disturbance
added (changing choice of o in the 0-mean Gaussian
model). As expected, increasing disturbance decreases
the overall performance of the system with ¢ = 5mm
resulting in high oscillations and the ¢ = 10 mm
disturbance resulting in a crash. Figure [§ shows the
response for the 3 mm disturbance response.

VI. CONCLUSION

In this paper, we gave an introduction into
Gaussian processes in machine learning and showed
an application to robotics and control by considering
a simulated quadrotor. The main idea was to
automatically tune the controller gains of the
quadroter with Gaussian processes without risking
dangerous system failures nd without prior knowledge.
Therefore, we utilized the SafeOpt Algorithm by
[2], applied it to an one dimensional example, then
expanded it to more dimensions and added noise to
the model. In general the SafeOpt-algorithm turned
out to be not as stable and robust as advertised.
Above all, the major weaknesses besides specifying
an initial feasible point is that reasonable boundaries
for the performance function need to be specified a
priori. This conflicts the major idea of this algorithm
a bit, which is allowing to tune a controller with no
or almost no prior knowledge. To conclude it can be
said that Gaussian processes (as a part of machine

learning) are a powerful tool, but should not solely
replace traditional tuning techniques as its fullest.

VII. OUTLOOK

An extension to tuning a PID controller as done
in this paper would be considering more advanced
controllers, like an LQR or MPC approach, and tune
these. Especially for LQR and MPC controllers, an
automatic tuning of the weight matrices without
providing safety is already provided by [7] and [9].

Another major improvement is choosing a different
performance measure which is not purely based on
step input characteristics. Especially when focusing on
very fast systems with small steps, a more continuous
approach might be feasible.

REFERENCES

[1] Carl Edward Rasmussen and Christopher K. I. Williams,
2005. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press.

[2] Berkenkamp, Felix and Schoellig, Angela P. and Krause,
Andreas, May 2016. Safe controller optimization for
quadrotors with Gaussian processes, 9781467380263,
http://dx.doi.org/10.1109/ICRA.2016.7487170, 2016 IEEE
International Conference on Robotics and Automation
(ICRA), IEE

[3] Sebastian Trimpe, November 2019 Lecture Notes on
Statistical Learning and Stochastic Control Max Plank
Institute for Intelligent Systems, University of Stuttgart,
Germany. (unpublished)

[4] Gortler, et al.,, 2019 A Visual Ezxploration of Gaussian
Processes, Distill.

[6] Shalec-Shwartz, S., Ben-David, S., May 2014
Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press.

[6] Bishop, Christopher M., 2006. Pattern Recognition and
Machine Learning. (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg.

[7] A. Marco, P. Hennig, J. Bohg, S. Schaal and S. Trimpe,
2016. Automatic LQR tuning based on Gaussian process
global optimization. 2016 IEEE International Conference
on Robotics and Automation (ICRA). Stockholm, 2016, pp.
270-277, doi: 10.1109/ICRA.2016.7487144.

[8] The MathWorks, Inc, 1994-2020. stepinfo Retrieved from
https://www.mathworks.com/help/control/ref/stepinfo.html

(11/18,/2020)
[9] J. Kabzan, L. Hewing, A. Liniger and M. N.
Zeilinger, Learning-Based Model Predictive Control

for Autonomous Racing IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 3363-3370, Oct. 2019, doi:
10.1109/LRA.2019.2926677.

[10] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger,
2010. Gaussian process optimization in the bandit setting:
no regret and experimental design. Proc. of the International
Conference on Machine Learning(ICML). pp. 1015-1022.

[11] Charles Tytler, QuadcopterSim
https://github.com/charlestytler/QuadcopterSim

http://dx.doi.org/10.1109/ICRA.2016.7487170

	Introduction
	Gaussian Processes
	From Gaussian random variables to Gaussian processes
	Academic Example of GPs
	Updating procedure for GPs

	Automatic controller tuning with Gaussian processes
	Setup of Simulation environment (Quadrotor)
	Quadrotor controller turning
	Results of one dimensional tuning
	Results from multi dimensional tuning
	Adding noise to model
	Adding disturbance to model

	Conclusion
	Outlook
	References

